Change search
ReferencesLink to record
Permanent link

Direct link
The effects of artificial E-cadherin matrix-induced embryonic stem cell scattering on paxillin and RhoA activation via a-catenin
Tokyo Institute of Technology, Yokohama, Japan.
Tokyo Institute of Technology, Yokohama, Japan and University of California, Davis, CA, USA.
Tokyo Institute of Technology, Yokohama, Japan.
Tokyo Institute of Technology, Yokohama, Japan.
2014 (English)In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 35, no 6, 1797-1806 p.Article in journal (Refereed) Published
Abstract [en]

Mechanical forces have been shown to affect stem cell behavior in a large array of ways. However, our understanding of how these mechanical cues may regulate the behavior of embryonic stem cells (ESCs) remains in its infancy. Here, we aim to clarify the effect of cell scattering on the regulation of Rho family GTPases Rac1 and RhoA as well as paxillin. Allowing ESCs to spread and scatter on a synthetically designed E-cadherin substratum causes phosphorylation of paxillin on consensus phosphorylation sites leading to activation of Rac1 and inactivation of RhoA. By culturing cells in presence of RhoA activator or growing cells to a highly confluent state reverses the effect of cell scattering phenotype. Knockdown of Ecadherin-adapter protein a-catenin revealed that it negatively affects paxillin phosphorylation and upregulates RhoA activity in compact cellular aggregates. Collectively these results indicate that cell scattering might cause a conformational change of a-catenin limiting its capacity to inhibit paxillin phosphorylation that causes an increase in Rac1 activation and RhoA deactivation. Understanding how synthetically designed extracellular matrix affect ESC signaling through mechanical cues brings a new aspect for stem cell engineers to develop technologies for controlling cell function.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 35, no 6, 1797-1806 p.
National Category
Biomaterials Science
URN: urn:nbn:se:kth:diva-165931DOI: 10.1016/j.biomaterials.2013.11.042ISI: 000331018700003OAI: diva2:809158

QC 20150519

Available from: 2015-04-30 Created: 2015-04-30 Last updated: 2015-05-19Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Leino, Mattias
In the same journal
Biomaterials Science

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 17 hits
ReferencesLink to record
Permanent link

Direct link