Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Revisiting the Nelson-Morfey scaling law for flow noise from duct constrictions
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Fläkt Woods, Sweden.ORCID iD: 0000-0002-6811-056X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.ORCID iD: 0000-0002-9061-4174
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-7898-8643
2015 (English)In: Journal of Sound and Vibration, ISSN 0022-460X, E-ISSN 1095-8568, Vol. 357, 233-244 p.Article in journal (Refereed) Published
Abstract [en]

The semi empirical scaling law by Nelson and Morfey [1] predicts the noise generation from constrictions in ducts with low Mach number flows. The results presented here demonstrate that the original model loose accuracy for constrictions of high pressure loss. An extension based on a momentum flux assumption of the dipole forces is suggested and is evaluated against measurement results for orifice geometries of higher pressure loss than earlier evaluated. A prediction model including constrictions at flow duct terminations is also suggested. Improved accuracy for the predictions of the new model are found for orifice geometries of both high and low pressure loss inside and at end of ducts. The extended model is finally evaluated by measurementson a regular ventilation air terminal device.

Place, publisher, year, edition, pages
2015. Vol. 357, 233-244 p.
National Category
Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:kth:diva-166200DOI: 10.1016/j.jsv.2015.06.019ISI: 000360965200015Scopus ID: 2-s2.0-84940889140OAI: oai:DiVA.org:kth-166200DiVA: diva2:809682
Funder
Swedish Research Council Formas, 245-2011-1615
Note

Updated from manuscript to article.

QC 20151009

Available from: 2015-05-05 Created: 2015-05-05 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Predicting flow-generated noise from HVAC components
Open this publication in new window or tab >>Predicting flow-generated noise from HVAC components
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

More energy efficient fans, i.e. larger sizes running at lower speeds, in Heating Ventilation and Air Conditioning (HVAC) systems decrease the fan noise and increase the importance of flow generated noise in other system components, e.g., dampers and air terminal devices. In this thesis, an extended prediction model, using semi-empirical scaling laws, for flow noise prediction in HVAC systems at low Mach number flow speeds is presented. The scaling laws can be seen as a combination of a generalized noise spectrum based on experimental data and constriction flow characteristics, where the latter can be gained from ComputationalFluid Dynamics (CFD) simulations. The flow generated noise can be predicted by semi-empirical scaling laws to avoid a time consuming, fully resolved simulation or measurement. Here, an approach is suggested where the general noise spectra are combined with turbulent data obtained from Reynolds Average Navier Stokes (RANS) simulations. A model is proposed using a momentumflux assumption of the dipole source strength and a frequency scaling based on the constriction pressure loss. To evaluate the applicability of the semi-emprical scaling law on different HVAC geometries both literature data and new measurement data are considered. Focus is at comparing geometries of high and low pressure loss but also to discuss the differences in other properties, e.g. radiation characteristics. A general noise reference spectrum is determined bya best fit calculation of measurement data including orifice, damper and bend geometries. Air terminal devices at the end of a duct are also evaluated and compared to constrictions inside ducts. The expected accuracy of the suggested model and its challenges as a tool for flow noise prediction of non-rotating components in HVAC systems are discussed.

Abstract [sv]

På grund av ökade energieffektivitetskrav har större fläktar som roterar med lägre hastighet börjat användas i byggnaders ventilationssystem(HVAC). De lägre hastigheterna har minskat ljudnivån från fläkten och ökat betydelsen av strömningsalstrat ljud från andra systemkomponenter, t.ex. spjäll och luftdon. I denna avhandling presenteras en förbättrad prediktionsmodell, utifrån semi-empiriska skalningslagar, för strömningsalstrat ljud i ventilationssystem. Skalningslagarna kan ses som en kombination av generellaljudspektra och strypningens specifika flödesegenskaper, där det senare kan fås från Computational Fluid Dynamics (CFD) simuleringar. Semiempiriska skalningslagar är ett alternativ för att undvika tidskrävandemätningar eller fullt upplösta simuleringar. Ett tillvägagångssätt presenteras här där det generella spektrat, bestämt utifrån experimentell data, kombineras med data från Reynolds Average Navier Stokes (RANS) simuleringar. En prediktionsmodell föreslås där källstyrkan hos dipolkrafterna definieras utifrån rörelsemängd och frekvensskalningen utifrån strypningens tryckfall. För att utvärdera vilka HVAC geometrier som kan ingå i den generella modellen analyseras både resultat från litteraturen samt nya mätningar. Avhandlingsarbetet fokuserar på att jämföra geometrier av högt och lågt tryckfall men också på att diskutera skillnader i andra egenskaper såsom strålningskarakteristik t.ex. genom att jämföra luftdon i slutet av en kanal med strypningar inuti kanalen. Ett generellt ljudspektrum föreslås utifrån en anpassning av mätdata för strypningar, spjäll och böjar. Modellens förväntade noggrannhet och dess utmaningar som prediktionsverktyg för icke-roterande komponenter i ventilationssystem diskuteras.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. v, 46 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2015:22
Keyword
flow noise, noise prediction, HVAC, flödesalstrat ljud, bullerprediktion, HVAC
National Category
Fluid Mechanics and Acoustics
Identifiers
urn:nbn:se:kth:diva-166201 (URN)978-91-7595-564-3 (ISBN)
Presentation
2015-05-27, sal Munin, Teknikringen 8, BV, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 245-2011-1615
Note

QC 20150518

Available from: 2015-05-18 Created: 2015-05-05 Last updated: 2015-05-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Kårekull, OscarEfraimsson, GunillaÅbom, Mats

Search in DiVA

By author/editor
Kårekull, OscarEfraimsson, GunillaÅbom, Mats
By organisation
Aeronautical and Vehicle EngineeringLinné Flow Center, FLOWVinnExcellence Center for ECO2 Vehicle design
In the same journal
Journal of Sound and Vibration
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf