Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigating the Potential of Wheel Corner Modules in Reducing Rolling Resistance of Tyres
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.ORCID iD: 0000-0001-6339-1043
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.ORCID iD: 0000-0002-1426-1936
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.ORCID iD: 0000-0002-4048-3452
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Vehicle Dynamics.
2014 (English)In: Proceedings of FISITA "14 World Automotive Congress, Maastricht, Netherlands (2014), 2014Conference paper, Published paper (Refereed)
Abstract [en]

The improvement in tire rolling efficiency is one of the key elements to optimize the fuel economy and thereby reduce the vehicle emissions. Earlier efforts to reduce the rolling resistance have mainly been focusing on new materials in the tire compounds. The overall research aim of this study is to present the potentials ofimplementing innovative chassis concepts with the focus on Wheel Corner Modules (WCM) by describing thepossibilities in affecting rolling resistance and relating them to previous research findings. The core idea of theconcept is to actively control and actuate all degrees of freedom in the wheel i.e. implementing steering,suspension and propulsion functions into a unique module which can be implemented in each corner of the vehicle. Using this concept the limitations of traditional wheel kinematics can be resolved extensively. This article presents the first step towards creating a vehicle simulation model that can show how the WCM functionality can influence the rolling resistance. A model of loss is chosen after analysing the behaviour of three different rubber models and then implemented into a brush tire model. An effective way, but less complicatedcompared to current methods, to introduce the loss into tire model is presented. In conventional suspensions, thedesign is compromising between for example safety, comfort and rolling resistance, etc. at all drivingconditions. However, using the WCM, the possibility of achieving a better compromise between those objectivesis possible. Finally, based on WCM functionalities a plausible control architecture is proposed.

Place, publisher, year, edition, pages
2014.
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
URN: urn:nbn:se:kth:diva-166208OAI: oai:DiVA.org:kth-166208DiVA: diva2:809762
Conference
FISITA ’14 World Automotive Congress, Maastricht, Netherlands, 2–6 June 2014
Note

QC 20150507

Available from: 2015-05-05 Created: 2015-05-05 Last updated: 2017-05-29Bibliographically approved
In thesis
1. A tyre model for energy studies in vehicle dynamics simulations
Open this publication in new window or tab >>A tyre model for energy studies in vehicle dynamics simulations
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xii, 64 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2015:15
National Category
Vehicle Engineering
Identifiers
urn:nbn:se:kth:diva-166282 (URN)978-91-7595-598-8 (ISBN)
Presentation
2015-05-22, Farkostteknik laboratoriet, Teknikringen 8, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20150507

Available from: 2015-05-07 Created: 2015-05-07 Last updated: 2015-05-07Bibliographically approved
2. Exploiting over-actuation to reduce tyre energy losses in vehicle manoeuvres
Open this publication in new window or tab >>Exploiting over-actuation to reduce tyre energy losses in vehicle manoeuvres
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Due to environmental and economic challenges road vehicles need bettersolutions to reduce energy consumption. Improvement in tyre rolling e-ciency is one of the key enablers for lower energy consumption. The shifttowards electrication and intelligent driving creates new opportunities todevelop energy-ecient vehicles. For instant over-actuated vehicles whichenables dierent objectives such as safety, performance and energy e-ciency to be fullled during a manoeuvre. The objective of this thesis is todevelop a simulation environment to simulate the energy dissipated fromthe tyre in order to investigate the potential to controlling dierent chassisparameters to reduce rolling losses during driving.The rst part of the thesis is dedicated to develop a high-delity semi-physical non-linear tyre model called the Extended Brush Tyre Model(EBM) to be used for energy studies in vehicle dynamics simulations andlater answer whether it is reasonable to believe that there is any potentialto reduce the rolling loss, and thereby energy consumption, using over-actuation.In the second part of the thesis the benets of over-actuation are invest-igated to enable rolling loss reduction. A control strategy using camber-sideslip control (CSC) is proposed. The allocation problem is solved in the formof an optimisation problem using Dynamics Programming (DP) and ModelPredictive Control (MPC). Exploiting the function for a chosen vehicle ina simulation environment shows a signicant improvement of about 60% inrolling loss reduction while maintaining path tracking. Also by using thisfunction the tyre forces can be distributed more evenly while maintainingthe global force, which results in an increase in the available tyre forcesthat is especially benecial when driving at the limit. It is revealed thatoptimising the vehicle manoeuvre from an energy perspective is sometimesin con ict with the safety demand, thus the energy and safety criteria needto be considered simultaneously during optimisation.Finally, experimental studies using an over-actuated concept vehicleconrmed that the CSC function can reduce overall energy consumptionduring low velocity manoeuvres up to about 13%. By increasing the speed,the saving potential decreases but the contribution is nonetheless of signi-cance. The developed simulation environment, including the EBM, willenable future studies of dierent solutions using over-actuation to reducerolling losses in dierent types of vehicles and driving tasks.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 80 p.
Series
TRITA-AVE, ISSN 1651-7660 ; 2017:35
National Category
Vehicle Engineering
Research subject
Vehicle and Maritime Engineering
Identifiers
urn:nbn:se:kth:diva-207787 (URN)978-91-7729-441-2 (ISBN)
Public defence
2017-06-13, D3, Lindstedtsvägen 5, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170524

Available from: 2017-05-24 Created: 2017-05-24 Last updated: 2017-06-29Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Davari, Mohammad MehdiJerrelind, JennyStensson Trigell, Annika

Search in DiVA

By author/editor
Davari, Mohammad MehdiJerrelind, JennyStensson Trigell, AnnikaEdrén, Johannes
By organisation
Vehicle DynamicsVinnExcellence Center for ECO2 Vehicle design
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 210 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf