CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt146",{id:"formSmash:upper:j_idt146",widgetVar:"widget_formSmash_upper_j_idt146",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt147_j_idt149",{id:"formSmash:upper:j_idt147:j_idt149",widgetVar:"widget_formSmash_upper_j_idt147_j_idt149",target:"formSmash:upper:j_idt147:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Dynamics of a Class of Quasi-Periodic Schrödinger CocyclesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2015 (English)In: Annales de l'Institute Henri Poincare. Physique theorique, ISSN 1424-0637, E-ISSN 1424-0661, Vol. 16, no 4, 961-1031 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2015. Vol. 16, no 4, 961-1031 p.
##### National Category

Materials Engineering
##### Identifiers

URN: urn:nbn:se:kth:diva-163944DOI: 10.1007/s00023-014-0330-8ISI: 000350669300002Scopus ID: 2-s2.0-84924176441OAI: oai:DiVA.org:kth-163944DiVA: diva2:810440
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true});
##### Funder

Swedish Research Council
##### Note

Let f : T -> R be a Morse function of class C-2 with exactly two critical points, let omega is an element of T be Diopharitine, and let lambda > 0 be sufficiently large (depending on f and omega). For any value of the parameter E is an element of R, we make a careful analysis of the dynamics of the skew-product map Phi(E)(theta, r) = (theta + omega, lambda f(theta) - E - 1/r), acting on the "torus" T x (R) over cap. Here, (R) over cap denotes the projective space R boolean OR {infinity}. The map Phi(E) is intimately related to the quasi-periodic Schrodinger cocycle (omega, A(E)) : T x R-2 -> T x R-2, (theta, x) -> (theta + omega, A(E)(theta) . x), where A(E) : T -> SL(2, R) is given by A(E)(theta) = ((0)(-1) 1(lambda f(theta) - E)), E is an element of R. More precisely, (omega, A(E)) naturally acts on the space T x (R) over cap, and Phi(E) is the map thus obtained. The cocycle (omega, A(E)) arises when investigating the eigenvalue equation H(theta)u = Eu, where H-theta is the quasi-periodic Schrodinger operator (H(theta)u)(n) = -(u(n+1) + u(n-1)) + lambda f (theta + (n - 1)omega)u(n), (1) The (maximal) Lyapunov exponent of the Schrodinger cocycle (omega, A(E)) is greater than or similar to log lambda, uniformly in E is an element of R. This implies that the map PE has exactly two ergodic probability measures for all E is an element of R; (2) If E is on the edge of an open gap in the spectrum sigma(H), then there exist a phase 0 is an element of T and a vector u is an element of l(2)(Z), exponentially decaying at +/-infinity, such that H(theta)u = Eu;acting on the space l(2) (Z). It is well known that the spectrum of H-theta, sigma(H), is independent of the phase theta is an element of T. Under our assumptions on f, omega and lambda, Sinai (in J Stat Phys 46(5-6):861-909, 1987) has shown that sigma(H) is a Cantor set, and the operator H-theta has a pure-point spectrum, with exponentially decaying eig,enfunctions, for a.e. theta is an element of T The analysis of Phi(E) allows us to derive three main results: (3) The map Phi(E) is minimal iff E E is an element of sigma(H)\ {edges of open gaps}. In particular, Phi(E) is minimal for all E is an element of R for which the fibered rotation number alpha(E) associated with (omega, A(E)) is irrational with respect to omega.

QC 20150507

Available from: 2015-05-07 Created: 2015-04-13 Last updated: 2017-12-04Bibliographically approved
doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1144",{id:"formSmash:j_idt1144",widgetVar:"widget_formSmash_j_idt1144",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1197",{id:"formSmash:lower:j_idt1197",widgetVar:"widget_formSmash_lower_j_idt1197",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1198_j_idt1200",{id:"formSmash:lower:j_idt1198:j_idt1200",widgetVar:"widget_formSmash_lower_j_idt1198_j_idt1200",target:"formSmash:lower:j_idt1198:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});