Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A product formula for the eigenfunctions of a quartic oscillator
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Mathematical Physics.
2015 (English)In: Journal of Mathematical Analysis and Applications, ISSN 0022-247X, E-ISSN 1096-0813, Vol. 426, no 2, 1012-1025 p.Article in journal (Refereed) Published
Abstract [en]

We consider the Schrodinger operator on the real line with an even quartic potential. Our main result is a product formula of the type psi(k)(x)psi(k)(y) = integral(R) psi(k)(z)K(x,y, z)dz for its eigenfunctions psi(k). The kernel function K is given explicitly in terms of the Airy function Ai(x), and it is positive for appropriate parameter values. As an application, we obtain a particular asymptotic expansion of the eigenfunctions psi(k).

Place, publisher, year, edition, pages
2015. Vol. 426, no 2, 1012-1025 p.
Keyword [en]
Quartic oscillator, Product formula, Kernel functions, Asymptotic expansions
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-165187DOI: 10.1016/j.jmaa.2015.02.014ISI: 000351249300026Scopus ID: 2-s2.0-84923629557OAI: oai:DiVA.org:kth-165187DiVA: diva2:810965
Note

QC 20150508

Available from: 2015-05-08 Created: 2015-04-24 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Langmann, Edwin
By organisation
Mathematical Physics
In the same journal
Journal of Mathematical Analysis and Applications
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf