Change search
ReferencesLink to record
Permanent link

Direct link
A comparative study of hybrid artificial neural network models for one-day stock price prediction
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

Prediction of stock prices is an important financial problem that is receiving increased attention in the field of artificial intelligence. Many different neural network and hybrid models for obtaining accurate prediction results have been proposed during the last few years in an attempt to outperform the traditional linear and nonlinear approaches.

This study evaluates the performance of three different hybrid neural network models used for one-day stock close price prediction; a pre-processed evolutionary Levenberg-Marquardt neural network, Bayesian regularized artificial neural network and neural network with technical- and fractal analysis. It was also determined which of the three outperformed the others.

The performance evaluation and comparison of the models are done using statistical error measures for accuracy; mean square error, symmetric mean absolute percentage error and point of change in direction.

The results indicate good performance values for the Bayesian regularized artificial neural network, and varied performance for the others. Using the Friedman test, one model clearly is different in its performance relative to the others, probably the above mentioned model.

The results for two of the models showed a large standard deviation of the error measurements which indicates that the results are not entirely reliable.

Place, publisher, year, edition, pages
Keyword [en]
artificial neural network, hybrid, comparative study
National Category
Computer Science
URN: urn:nbn:se:kth:diva-166641OAI: diva2:811673
Available from: 2015-05-12 Created: 2015-05-12 Last updated: 2015-05-12Bibliographically approved

Open Access in DiVA

fulltext(1191 kB)384 downloads
File information
File name FULLTEXT01.pdfFile size 1191 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 384 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1710 hits
ReferencesLink to record
Permanent link

Direct link