Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Temperature-controlled MPa-pressure ultrasonic cell manipulation in a microfluidic chip
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0002-7023-4772
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.ORCID iD: 0000-0003-0064-0086
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
KTH, School of Engineering Sciences (SCI), Applied Physics, Biomedical and X-ray Physics.
2015 (English)In: Lab on a Chip, ISSN 1473-0197, E-ISSN 1473-0189, Vol. 15, no 16, 3341-3349 p.Article in journal (Refereed) Published
Abstract [en]

We study the temperature-independent impact on cell viability of relevant physical parameters during long-term, high-acoustic-pressure ultrasonic exposure in a microfluidic chip designed for ultrasonic-standing-wave trapping and aggregation of cells. We use a light-intensity method and 5 mum polymer beads for accurate acoustic pressure calibration before injecting cells into the device, and we monitor the viability of A549 lung cancer cells trapped during one hour in an ultrasonic standing wave with 1 MPa pressure amplitude. The microfluidic chip is actuated by a novel temperature-controlled ultrasonic transducer capable of keeping the temperature stable around 37 °C with an accuracy better than ±0.2 °C, independently on the ultrasonic power and heat produced by the system, thereby decoupling any temperature effect from other relevant effects on cells caused by the high-pressure acoustic field. We demonstrate that frequency-modulated ultrasonic actuation can produce acoustic pressures of equally high magnitudes as with single-frequency actuation, and we show that A549 lung cancer cells can be exposed to 1 MPa standing-wave acoustic pressure amplitudes for one hour without compromising cell viability. At this pressure level, we also measure the acoustic streaming induced around the trapped cell aggregate, and conclude that cell viability is not affected by streaming velocities of the order of 100 mum s(-1). Our results are important when implementing acoustophoresis methods in various clinical and biomedical applications.

Place, publisher, year, edition, pages
2015. Vol. 15, no 16, 3341-3349 p.
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-166828DOI: 10.1039/c5lc00490jISI: 000358609500011PubMedID: 26156858Scopus ID: 2-s2.0-84938342105OAI: oai:DiVA.org:kth-166828DiVA: diva2:812506
Note

Updated from "Manuscript" to "Article". QC 20150814

Available from: 2015-05-19 Created: 2015-05-19 Last updated: 2017-12-04Bibliographically approved
In thesis
1. On-chip Ultrasonic Sample Preparation
Open this publication in new window or tab >>On-chip Ultrasonic Sample Preparation
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Acoustofluidics has become a well-established technology in the lab-on-a-chip scientific community. The technology involves primarily the manipulation of fluids and/or particles in microfluidic systems. It is used today for variety of applications such as handling, sorting, washing and separation of cells or micro-particles, and for mixing and pumping of fluids. When such manipulation functions are integrated in micro-devices, the technology has been used for clinical sample preparation as well as for studying various fundamental bio-related questions.

In this doctoral thesis, we have developed different acoustic methods and micro-devices with the aim to create a multi-functional sample preparation platform. We introduced a simple method for in-situ measurements of acoustic energy densities inside a microfluidic channel, from which acoustic pressure amplitudes can be extracted. The method has been used for determining the magnitude of acoustic radiation forces acting on suspended particles and cells inside an acoustofluidic system. For optimization of acoustophoresis (i.e. manipulation of particles into the nodes of standing waves), we have investigated different designs of ultrasonic transducers based on tunable-angle wedges and backing layers attached to glass-silicon microfluidic chips. Furthermore, we have investigated the implementation of frequency-modulated actuation methodology combined with broadbanded ultrasonic transducers, and the implementation of multiple ultrasonic manipulation functions localized to spatially separated zones in a complex microchannel network. We demonstrate two different bio-applications useful for multi-step and multi-functional sample preparation. First, we demonstrate a micro-device for size-based separation, isolation and up-concentration of cells, followed by microscopy-based dynamic monitoring of individual cell properties when introducing different reagents. This holds great promise for use in cellular and molecular diagnostics. Second, we demonstrate an acoustic method for micro-vortexing in µL-volume reaction chambers in disposable polymer chips. The method is used for fast mixing of fluids, for disaggregating and re-suspending magnetically trapped and clumped micro-beads, and for cell lysis followed by DNA extraction. Finally, we demonstrate a temperature-controlled device compatible with high-acoustic-pressure (1 MPa) ultrasonic manipulation of cells, and we demonstrate that cells can be exposed to standing-wave ultrasound at 1 MPa for one hour without compromising the cell viability.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. ix, 65 p.
Series
TRITA-FYS, ISSN 0280-316X ; 15:21
Keyword
Ultrasound, Sample preparation, Particle manipulation
National Category
Other Physics Topics
Research subject
Physics; Biological Physics
Identifiers
urn:nbn:se:kth:diva-166746 (URN)978-91-7595-529-2 (ISBN)
Public defence
2015-06-05, FD5 AlbaNova University centrum,, Roslagstullsbacken 21, KTH, Stockholm, 07:14 (English)
Opponent
Supervisors
Note

QC 20150519

Available from: 2015-05-19 Created: 2015-05-15 Last updated: 2015-06-04Bibliographically approved
2. Ultrasonic Fluid and Cell Manipulation
Open this publication in new window or tab >>Ultrasonic Fluid and Cell Manipulation
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

During the last decade, ultrasonic manipulation has matured into an important tool with a wide range of applications, from fundamental cell biological research to clinical and industrial implementations. The contactless nature of ultrasound makes it possible to manipulate living cells in a gentle way, e.g., for positioning, sorting, and aggregation. However, when manipulating cells using ultrasound, especially using high acoustic amplitudes, a great deal of heat can be generated. This constitutes a challenge, since the viability of cells is dependent on a stable physiological temperature around 37°C.

     In this Thesis we present applications of ultrasonic manipulation of fluids, particles, and cells in temperature-controlled micrometer-sized devices fabricated using well established etching techniques, directly compatible with high-resolution fluorescence microscopy. Furthermore, we present ultrasonic manipulation in larger up to centimeter-sized devices optimized for fluid mixing and cell lysis. In the present work, two new ultrasonic manipulation platforms have been developed implementing temperature control. These platforms are much improved with increased performance and usability compared to previous platforms. Also, two new ultrasonic platforms utilizing low-frequency ultrasound for solubilization and cell lysis of microliter-volumed and milliliter-volumed samples have been designed and implemented.

     We have applied ultrasound to synchronize the interaction between large numbers of immune, natural killer cells, and cancer cells to study the cytotoxic response, on a single cell level. A heterogeneity was found among the natural killer cell population, i.e., some cells displayed high cytotoxic response while others were dormant. Furthermore, we have used temperature-controlled ultrasound to form up to 100, in parallel, solid cancer HepG2 tumors in a glass-silicon multi-well microplate. Next, we investigated the immune cells cytotoxic response against the solid tumors. We found a correlation between the number of immune cells compared to the size of the tumor and the cytotoxic outcome, i.e., if the tumor could be defeated.

            Finally, the effect of high acoustic pressure amplitudes in the MPa-range on cell viability has been studied in a newly developed platform optimized for long-term stable temperature control, independent on the applied ultrasound power. Lastly, we present two applications of ultrasonic fluid mixing and lysis of cells. One platform is optimized for small microliter-sized volumes in plastic disposable chips and another is optimized for large milliliter-sized volumes in plastic test tubes. The latter platform has been implemented for clinical sputum sample solubilization and cell lysis for genomic DNA extraction for subsequent pathogen detection

Abstract [sv]

Ultraljudsmanipulering har under de senaste tio åren mognat och utvecklats till ett verktyg med ett brett användningsområde. Idag kan man finna applikationer inom allt från cellbiologisk grundforskning till industri samt sjukvård. Ultraljudsmanipuleringens kontaktlösa natur gör det till en varsam metod för att manipulera celler, till exempel inom positionering, sortering och aggregering. När ultraljud med hög amplitud används kan värmeutvecklingen, som är oundviklig, bli ett problem. För att kunna säkerställa hög cellviabilitet krävs temperaturkontroll som kan hålla en fysiologisk, stabil temperatur på 37°C.

     I denna avhandling presenterar vi tillämpningar av temperaturkontrollerad ultraljudsmanipulering i mikrometerstora anordningar fabricerade med väletablerade etsningstekniker.  Dessa anordningar är optimerade för att vara fullt kompatibla med högupplöst fluorescensmikroskopi.  Vi demonstrerar även ultraljudsmanipulering i centimeterstora anordningar optimerade för omrörning och blandning av vätskor samt lysering av celler. Två nya plattformar för ultraljudsmanipulering med inbyggd temperaturkontroll har utvecklats. Dessa två plattformar erbjuder ökad prestanda, flexibilitet samt även användarvänlighet. Utöver dessa plattformar har ytterligare två anordningar för lågfrekvent ultraljudssolubilisering och cellysering av mikroliter- och milliliterstora prover konstruerats.

     I denna avhandling har vi tillämpat ultraljud för att synkronisera interaktionen mellan populationer utav immunceller (natural killer-celler) och cancerceller för att på cellnivå studera det cytotoxiska gensvaret. Vi fann en heterogenitet hos immuncellspopulationen. Det manifesterade sig i en fördelning av immuncellerna, från celler med stort cytotoxiskt gensvar till inaktiva immunceller. Vi har dessutom använt temperaturkontrollerad ultrasljudsmanipulering för att skapa solida cancertumörer utav HepG2-cancerceller, upp till 100 stycken parallellt, i en multihåls-mikrotiterplatta bestående av glas och kisel. Med hjälp av dessa tumörer har vi studerat det cytotoxiska gensvaret från immuncellerna. Vi fann att förhållandet mellan antalet immunceller och storleken på tumören bestämde utfallet, det vill säga om tumören kunde bekämpas.

     Vi presenterar dessutom effekten utav högamplitudsultraljudsexponering av cancerceller i en plattform speciellt designad för höga tryckamplituder med implementerad ultraljudseffektsoberoende temperaturkontroll. Slutligen presenterar vi två tillämpningar av ultraljud för vätskeblandning och cellysering. Den första tillämpningen är anpassad för små volymer i plastchip för engångsbruk och den andra är optimerad för större volymer i plastprovrör. Den senare tillämpningen är speciellt framtagen för ultraljudssolubilisering och cellysering utav kliniska sputumprover för att möjliggöra DNA-extrahering för detektion av smittämnen.     

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. ix, 68 p.
Series
TRITA-FYS, ISSN 0280-316X ; 2015:24
Keyword
3D cell culture, Acoustic streaming, Acoustofluidics, Cell manipulation, High-resolution imaging, Multi-well, Microplate, Natural killer cell, Piezo, Radiation force, Solid tumor, Solubilization, Spheroid, Standing wave, Temperature control, Transducer, Trapping, Ultrasonic
National Category
Other Physics Topics
Research subject
Physics; Biological Physics
Identifiers
urn:nbn:se:kth:diva-166779 (URN)978-91-7595-559-9 (ISBN)
Public defence
2015-06-12, AlbaNova FD5, Roslagstullsbacken 21, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20150522

Available from: 2015-05-22 Created: 2015-05-18 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Authority records BETA

Ohlin, MathiasIranmanesh, Ida Sadat

Search in DiVA

By author/editor
Ohlin, MathiasIranmanesh, Ida SadatChristakou, Athanasia E.Wiklund, Martin
By organisation
Biomedical and X-ray Physics
In the same journal
Lab on a Chip
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 460 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf