Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Music Generation in a Certain Style Using First Order Markov Chains
KTH, School of Engineering Sciences (SCI).
KTH, School of Engineering Sciences (SCI).
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this thesis there will be an attempt to model the market price of cryptocurrencies. Since 2010 cryptocurrencies have gone from being fairly unknown to being familiar amongst the general public which increases the need for knowledge on what affects the market price of cryptocurrencies.

These connections will be found by statistical analysis and be applied on cryptocurrency data from January 2012 to January 2015. The data will be modeled by linear regression and implemented in R after the data have been formating in Excel. The results suggest that the price of cryptocurrencies depends heavily on the search traffic on the specific cryptocurrency name on Google's search engine.

Abstract [sv]

I denna uppsats kommer det att göras en strukturtolkning av priset på kryptovalutor. Sedan 2010 har kryptovalutor gått från att vara anonymt till att bli välkänt vilket gör att kunskaper om vad som påverkar priset på dem är betydande.

För att hitta dessa underliggande samband kommer en statistisk analys göras på data för kryptovalutor mellan januari 2012 och januari 2015. Modellerna som kommer att användas baserar sig på linjär regression och kommer implementeras i R efter att datan har formaterats i Excel. Resultatet av undersökningen är att priset på kryptovalutor beror starkt på hur många som har använt kryptovalutans namn på Googles sökmotor.

Place, publisher, year, edition, pages
2015.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-168076OAI: oai:DiVA.org:kth-168076DiVA: diva2:814186
Supervisors
Examiners
Available from: 2015-05-26 Created: 2015-05-26 Last updated: 2015-05-26Bibliographically approved

Open Access in DiVA

No full text

By organisation
School of Engineering Sciences (SCI)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 69 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf