Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chitosan biopolymer: a treatment option for uranium(VI) removal from drinking water
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (KTH-International Groundwater Arsenic Research Group,)
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering. (KTH-International Groundwater Arsenic Research Group,)ORCID iD: 0000-0003-4350-9950
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
National Category
Water Treatment
Identifiers
URN: urn:nbn:se:kth:diva-168085OAI: oai:DiVA.org:kth-168085DiVA: diva2:814290
Note

QS 2015

Available from: 2015-05-26 Created: 2015-05-26 Last updated: 2015-05-26Bibliographically approved
In thesis
1. Chitosan biopolymer as an adsorbent for drinking water treatment: Investigation on Arsenic and Uranium
Open this publication in new window or tab >>Chitosan biopolymer as an adsorbent for drinking water treatment: Investigation on Arsenic and Uranium
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In many countries over the world (including Sweden), metal toxicity in freshwater resources causes a severe drinking water quality problem and poses a threat to the environment and human health. Among the different toxic metals in the water resources of Sweden, arsenic and uranium are the biggest threats to health. These elements, over long time consumption, may even lead to cancer and/or neurological disorder. Most of the wells are installed in crystalline and sedimentary bedrock and the received water comes from water bearing fractures in the bedrock. The handling of such water is an issue and there is a need to reduce the arsenic and uranium exposure by improving processes and technologies. It is a very serious problem demanding a safe, sustainable and eco-friendly arsenic and uranium removal technology prior to drinking water supply. Different treatment systems are available, but many of them are not suitable due to their high cost, operation complexity and waste management issues. Through this study, chitosan biopolymer the second largest abundant polysaccharide on earth after cellulose, was verified as a potential adsorbent for arsenic(V) and uranium(VI) removal from water solution. Adsorbent characterizations were also conducted by XRD, FTIR, SEM, UV-visible spectrum and TGA/DTA investigations. Bench-scale batch experiments were conducted using chitosan biopolymer (DDA-85%) as an adsorbent to determine the arsenic(V) and uranium(VI) removal efficiency, by allowing four important effective parameters e.g. chitosan dosages, pH, contact time and contaminant concentration. The adsorption data at optimum conditions were fitted with Langmuir, Freundlich and Dubinin-Radushkhevic (D-R) isotherm and Lagergren pseudo-first-order and pseudo-second-order kinetic model to investigate the adsorption process. The characterization of materials assured the presence of effective amino, hydroxyl, and carboxyl groups of chitosan. Another advanntage is that the materials are bio-degradable. The results show that the arsenic(V) and uranium(VI) removal efficiency was 100% and 97.45% after 300 minutes with optimum pH of 6.0 and 7.0 respectively. The optimum adsorbent dosages and initial concentration were 60 and 80g/L and 100 and 250 µg/L respectively. The adsorption process was suitably described by Freundlich isotherm (R2 = 0.9933) and Langmuir isotherm (R2 = 0.9858) correspondingly for arsenic(V) uranium(VI) compared to other isotherms. This is an important indicator of homogeneous monolayer adsorption of metals. For both of arsenic(V) and uranium(VI), pseudo-second-order explained the adsorption kinetics better than pseudo-first-order and the second-order kinetic regression coefficient (R2) were 0.9959 and 0.9672 correspondingly. Connecting to the above mentioned results, it can be summed up that the chitosan biopolymer (DDA 85%) can be used as an inexpensive, sustainable and environment-friendly treatment option for arsenic(V) and uranium(VI) contaminated drinking water.

Abstract [sv]

I många länder världen runt (även i Sverige) orsakar metallers toxicitet besvärliga vattenkvalitetsproblem och utgör ett hot mot människors hälsa. Bland de toxiska metaller som finns i svenska vatten utgör arsenik och uran i dricksvatten allvarliga hälsorisker vid långvarig exposition då de kan orsaka cancer och neurologiska problem. Flertalet brunnar är installerade i kristallint berg och sedimentära bergarter och vattnet kommer vanligen från sprickor i berggrunden. Hanteringen av sådant vatten kan kräva reduktion av expositionen för arsenik- och uraninnehåll genom förbättrade processer och teknologier. Detta är ett angeläget problem som kräver en säker, pålitlig och ekovänlig teknologi att tillämpas innan vattnet distribueras. En rad olika behandlingssystem är tillgängliga men många av dem är inte lämpliga beroende på deras höga kostnad, den komplicerade tillämpningen och problem med hanteringen av restprodukter. I denna studie has biopolymeren chitosan, den näst vanligaste polymeren efter cellulosa, konstaterats vara en möjlig adsorbent för att avlägsna arsenik(V) och uran(VI) från vatten. Karakterisering av adsorbenten har också genomförts genom XRD, FTIR, SEM, UV och strålning i synligt ljus samt TGA/DTA undersökningar. Batch-tester i bänkskala har genomförts med användning av chitosan (DDA-85%) som adsorbent för att bestämma dess förmåga att avlägsna arsenik(V) och uran(VI)genom att variera fyra parametrar, nämligen kontakttid, pH, dos av chitosan och halt av föroreningen. Adsorptionsdata vid optimala förhållanden bestämdes genom tillämpning av Langmuir, Freundlich och Dubinin-Radushkhevic (D-R) isotermerna. Vidare tillämpades Lagergrens pseudo-first-order och pseudo-second-order kinetiska modell för att undersöka adsorptionsprocessen. Karakteriseringen av materialet visade förefintligheten av effektiva amino- (N-H), hydroxyl- (O-H) samt karboxylgrupper (C=O) i chitosan-polysackariden och att det är lätt nedbrytbart. Preliminära resultat visar att reduktionen av arsenik(V) och uran(VI) var 100 respektive 97,45 % efter 300 minuters kontakttid med optimalt pH på 6,0 respektive 7,0. De optimala doserna av adsorbent och den initiala koncentrationen var 60 och 80 g/L och 100 och 250 µg/L. Adsorptions process beskrevs bäst av Freundlich-isotermen för arsenik(V) (R2 = 0.9933) och med Langmuir-isotermen för uran(VI) (R2 = 0,9858) jämfört med andra isotermer vilket var en viktig indikation på en homogen monolager-adsorption. För både arsenik(V) och uran(VI) beskrev pseudo-second order adsorptionen bättre än pseudo-first-order. Second-order kinetiska regressionskoefficienten (R2) var 0.9959 och 0.9872 respektive. De ovanstående resultaten visar sammanfattningsvis att chitosan (DDA-85%) kan användas som en billig, pålitlig och miljövänlig behandlingsmetod av vatten för arsenik(V) och uran(VI).

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 26 p.
Series
TRITA-LWR. LIC, ISSN 1650-8629 ; 2015:02
Keyword
Chitosan Biopolymer, Characterization, Biodegradable, Arsenic(V), Uranium (VI), Adsorption, Isotherm, Kinetic model  , Chitosan, Biopolymer, Karakterisering, Bionedbrytbar, arsenik(V), uran(VI), Adsorption, Isoterm, Kinetisk modell
National Category
Engineering and Technology Environmental Sciences Other Environmental Engineering Civil Engineering Water Engineering
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-167973 (URN)978-91-7595-593-3 (ISBN)
Presentation
2015-06-05, V1, Teknikringen 76, KTH, Stockholm, 10:15 (English)
Opponent
Supervisors
Projects
ChitoClean
Funder
EU, FP7, Seventh Framework Programme, 315087
Note

QC 20150526

Available from: 2015-05-26 Created: 2015-05-23 Last updated: 2015-05-27Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Bhattacharya, Prosun

Search in DiVA

By author/editor
Annaduzzaman, Md.Bhattacharya, ProsunDeshpande, Paritosh Chakor
By organisation
Land and Water Resources EngineeringSustainable development, Environmental science and Engineering
Water Treatment

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 237 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf