Change search
ReferencesLink to record
Permanent link

Direct link
Undersökning av Mekaniska Problem med hjälp av Datoralgebra
KTH, School of Engineering Sciences (SCI), Mechanics.
2015 (Swedish)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

When investigating mechanical problems it is often more convenient to deal with scalars rather than vectors. In this project methods stemming from the field of analytical mechanics, which lets one derive the equations of motion using scalar quantities instead of vectors, have been used. Two mechanical problems were investigated, a double pendulum with a spring and particles orbit in a sphere. The equations of motion of the two systems were derived with the assistance of computer algebra, using Maple and the external package Sophia. The systems were investigated with regard to periodicity and conserved quantities.

Abstract [sv]

Vid undersökning av mekaniska problem är det oftare smidigare att utgå från skalära storheter än vektorstorheter. I detta projekt har metoder från den analytiska mekaniken använts vilka låter ett systems rörelseekvationer härledas med just skalära storheter istället för vektorstorheter. Två mekaniska system har undersökts, en dubbelpendel med fjäder och en partikels banrörelse i en halvsfär. Systemens rörelseekvationer har tagits fram och lösts med hjälp av datoralgebra, i Maple med det externa programpaketet Sophia. Systemen har sedan undersökts med avseende på periodicitet och bevarade storheter.

Place, publisher, year, edition, pages
2015. , 24 p.
National Category
Applied Mechanics
URN: urn:nbn:se:kth:diva-168218OAI: diva2:814921
Available from: 2015-05-28 Created: 2015-05-28 Last updated: 2015-05-28Bibliographically approved

Open Access in DiVA

fulltext(2422 kB)101 downloads
File information
File name FULLTEXT01.pdfFile size 2422 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Applied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
Total: 101 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 196 hits
ReferencesLink to record
Permanent link

Direct link