Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Efficiency Plasmonic Metamaterial Selective Emitter Based on an Optimized Spherical Core-Shell Nanostructure for Planar Solar Thermophotovoltaics
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP. Zhejiang University, China .
2015 (English)In: PLASMONICS, ISSN 1557-1955, Vol. 10, no 3, 529-538 p.Article in journal (Refereed) Published
Abstract [en]

We propose a high-efficiency plasmonic metamaterial selective emitter based on a tungsten (W) spherical core-shell nanostructure for potential applications in planar solar thermophotovoltaics. This structure consists of silicon dioxide (SiO2)-coated W nanospheres periodically distributed on a W substrate and a thin W layer deposited on top. Using a new definition of spectral efficiency, numerical optimization is performed and its optical behaviors are systematically investigated. The numerical results show that our selective emitter has a high emissivity in the short wavelength range below the wavelength corresponding to the bandgap of the back photovoltaic cell and a low emissivity in the long wavelength range beyond it. Its spectral efficiency of 0.39 is much higher than those of other cases without the top W cover layer or the W nanospheres. Such excellent emission selectivity is attributed to the strong photonic interaction within the gaps between the adjacent core-shell nanospheres, the tightly confined optical fields in both the Omega-shaped W-SiO2-W nanocavities, and the bottom nanocavities formed by the W nanospheres and the W substrate. It is also very tolerant toward the thicknesses of the SiO2 layer and the top W cover layer.

Place, publisher, year, edition, pages
2015. Vol. 10, no 3, 529-538 p.
Keyword [en]
Solar energy, Plasmonics, Metamaterial, Thermal emission
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-169338DOI: 10.1007/s11468-014-9837-6ISI: 000353827400006Scopus ID: 2-s2.0-84911939317OAI: oai:DiVA.org:kth-169338DiVA: diva2:820774
Note

QC 20150612

Available from: 2015-06-12 Created: 2015-06-12 Last updated: 2015-06-12Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
He, Sailing
By organisation
Electromagnetic EngineeringZhejiang-KTH Joint Research Center of Photonics, JORCEP
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf