Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The linear and nonlinear biomechanics of the middle ear
KTH, School of Engineering Sciences (SCI), Mechanics.
2005 (English)Doctoral thesis, comprehensive summary (Other scientific)
Abstract [en]

This thesis addresses the biomechanics of the human middle ear, that part of the auditory system which converts sound pressure waves in air to fluid pressure waves in the cochlea. The middle ear's mechanism is analysed in four papers, three main and one supporting; in the main papers the middle ear is treated as a multi-particle, multi-rigid body ensemble possessing a variable number of degrees of freedom depending upon the case being investigated.

It is confirmed, using the standard representation of a single fused incudo-malleal block, that the middle ear's motion is linear, but when this fused block restriction is lifted nonlinearity is present which significantly affects the mechanism's behaviour. In view of the linearity of the chain under the fused block conditions, the explanatory veracity of the conventionally accepted `fixed axis hypothesis' of ossicular motion is examined and found to be wanting as a realistic description of the chain's physical movement.

The nonlinear behaviour of the ossicular chain centres around the action of the incudo-malleal joint. This joint is shown to have preferential planes of operation, principally the pitch or longitudinal plane and in general to act as an efficient energy dissipator at high driving pressures and low frequencies. Providing the pressure is high enough, it is shown this energy dissipator effect eventually becomes independent of frequency.

The supporting paper discusses the dynamics of the imposition and removal of equation constraints justifying methods used to investigate the functioning of the incudo-malleal joint.

Place, publisher, year, edition, pages
2005. , vi, 48 p.
Keyword [en]
Biotechnology, biomechanics, middle ear models, ossicular chain
Keyword [sv]
Bioteknik
National Category
Industrial Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-258OAI: oai:DiVA.org:kth-258DiVA: diva2:8221
Public defence
2005-06-08, Sal V3, Teknikringen 72, Stockholm, 10:00
Opponent
Supervisors
Available from: 2005-06-02 Created: 2005-06-02

Open Access in DiVA

fulltext(4004 kB)365 downloads
File information
File name FULLTEXT01.pdfFile size 4004 kBChecksum MD5
0c1d5fe603de94fe4947286ed274723b27bf3b165a4fbfe14076765dd60359753e9f600f
Type fulltextMimetype application/pdf

By organisation
Mechanics
Industrial Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 365 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 337 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf