Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On Joint Source-Channel Coding for a Multivariate Gaussian on a Gaussian MAC
Show others and affiliations
2015 (English)In: IEEE Transactions on Communications, ISSN 0090-6778, E-ISSN 1558-0857, Vol. 63, no 5, 1824-1836 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, nonlinear distributed joint source-channel coding (JSCC) schemes for transmission of multivariate Gaussian sources over a Gaussian multiple access channel are proposed and analyzed. The main contribution is a zero-delay JSCC named Distributed Quantizer Linear Coder (DQLC), which performs relatively close the information theoretical bounds, improves when the correlation among the sources increases, and does not level off as the signal-to-noise ratio (SNR) becomes large. Therefore it outperforms any linear solution for sufficiently large SNR. Further an extension of DQLC to an arbitrary code length named Vector Quantizer Linear Coder (VQLC) is analyzed. The VQLC closes in on the performance upper bound as the code length increases and can potentially achieve the bound for any number of independent sources. The VQLC leaves a gap to the bound whenever the sources are correlated, however. JSCC achieving the bound for arbitrary correlation has been found for the bivariate case, but that solution is significantly outperformed by the DQLC/VQLC when there is a low delay constraint. This indicates that different approaches are needed to perform close to the bounds when the code length is high and low. The VQLC/DQLC also apply for bandwidth compression of a multivariate Gaussian transmitted on point-to-point links.

Place, publisher, year, edition, pages
2015. Vol. 63, no 5, 1824-1836 p.
Keyword [en]
Joint source-channel coding, multivariate Gaussian, multiple access channel, zero-delay, asymptotic analysis, bandwidth compression
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:kth:diva-169277DOI: 10.1109/TCOMM.2015.2410774ISI: 000354944100026Scopus ID: 2-s2.0-84930216287OAI: oai:DiVA.org:kth-169277DiVA: diva2:822345
Funder
Swedish Research CouncilVINNOVA
Note

QC 20150616

Available from: 2015-06-16 Created: 2015-06-12 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Skoglund, Mikael

Search in DiVA

By author/editor
Skoglund, Mikael
By organisation
Communication TheoryACCESS Linnaeus Centre
In the same journal
IEEE Transactions on Communications
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 36 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf