Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Crowd Navigation: Autonomous navigation in an urban environment
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Navigering i folkmassor : Autonom navigering i stadsmiljö (Swedish)
Abstract [en]

In this thesis, strategies for navigating a crowded area using an autonomous holonomic robot are discussed and evaluated. The focus is set on path planning and the topic is therefore largely decoupled from the prediction (i.e. machine learning) and control theory techniques needed for a practical implementation outside of the simulated environment. Existing methods and algorithms for path planning in highly dynamic environments are compared using several measures via computer simulations in different environments. A new, effective, and yet simple, algorithm is introduced and proven to be useful in certain scenarios. This algorithm, ART, predicts the future states of the crowd and using these predictions finds better paths to the goal than traditional algorithms.

Abstract [sv]

I detta examensarbete utvärderas och diskuteras strategier för navigering bland folk med hjälp av en självstyrd holonomisk robot. Fokus är satt på navigeringsproblemet i sig och närliggande ämnen som maskininlärning och reglerteknik behandlas ej även om en fördjupning på dessa områden vore nödvändigt för en praktisk implementation utanför den simulerade världen. Existerande strategier och algoritmer för navigering av dynamiska miljöer utvärderas genom datorsimuleringar i varierande miljöer. En ny algorithm presenteras och visar sig vara användbar i vissa situationer. Denna algoritm, ART, förutser folkmassans rörelser och använder denna information för att hitta bättre vägar till målet.

Place, publisher, year, edition, pages
2015.
Keyword [en]
Navigation, Path finding, Crowd movement
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-169497OAI: oai:DiVA.org:kth-169497DiVA: diva2:822446
External cooperation
Ishikawa Komuro Laboratory, University of Tokyo
Educational program
Master of Science in Engineering -Engineering Physics
Supervisors
Examiners
Available from: 2015-06-29 Created: 2015-06-15 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

fulltext(4175 kB)119 downloads
File information
File name FULLTEXT01.pdfFile size 4175 kBChecksum SHA-512
5f82a8ff9a8cd9b665bf9903d473d534412b89641784ac2b97ddf136fb0cd61ca3959c84eed38892a433a575f4699143e72b6ba9a037e95a3e3a14d36ddf008b
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 119 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 632 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf