Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mould resistance design for external wood frame wall systems: Simulation and evaluation of wall structures under varying conditions of exposure using the MRD model
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Technology. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Technology. KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Mögelresistensdimensionering för träregelkonstruktioner i ytterväggar : Simulering och utvärdering av ytterväggar under varierande exponeringsförhållanden med MRD-modellen (Swedish)
Abstract [en]

Moisture induced damages to building envelopes can result in microbial growth possibly affecting the health and wellbeing of occupants. Recent failing structures and damaged buildings indicate a lack of tools to estimate risk of mould growth and moisture damage. In this work a so-called mould resistance design (MRD) model has been applied for mapping the risk for mould growth on a number of wood-containing wall structures. The MRD model introduces an engineering approach to moisture safety design in a similar way as for structural design, where load and resistance is compared. The MRD model introduces and quantifies the concepts of climatic exposure and material resistance and compares them through an MRD index. This MRD index incorporates a limit state, which gives the critical dose of exposure for a given resistance to initiate onset of mould growth.

 

Three conceptual wall structures were evaluated and analyzed in terms of MRD index: two wall systems with an air gap and one wall system without. A parametric study investigating the effect of parameter variation on MRD index was conducted. Evaluated parameters were: climate (geographic location), orientation, air changes per hour in the air gap, driving rain penetrating the facade layer, exterior plaster properties and wood type. The simulations were performed using the hygrothermal calculation software WUFI. The results indicate that the wall systems with a ventilated air gap performs better in terms of MRD index i.e. suggests a lower risk of initiation of mould growth than the wall system without air gap. The results of orientation variation show that wall systems perform differently dependent on layering structure. The inherent water sorption properties of the exterior plaster are shown to have a large effect on the results. In addition, uncertainties were found on how to accurately include hydrophobicity as a parameter in the model. The report concludes that geographical location and its specific climate is the most important parameter to consider when designing for moisture safety. The MRD model is recommended to be used in combination with traditional moisture safety evaluation.

Place, publisher, year, edition, pages
2015. , 70 p.
Series
TRITA-BYTE, 438
Keyword [en]
MRD, Mould growth, Wood frame wall systems, Moisture safety evaluation, WUFI
Keyword [sv]
MRD, Mögel, Träregelväggar, Fuktsäkerhetsprojektering, WUFI
National Category
Building Technologies Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-169744ISRN: KTH/BYTE/EX-438-SEOAI: oai:DiVA.org:kth-169744DiVA: diva2:825337
Subject / course
Building Technology
Educational program
Master of Science in Engineering - Urban Management
Supervisors
Examiners
Available from: 2015-09-23 Created: 2015-06-23 Last updated: 2015-09-23Bibliographically approved

Open Access in DiVA

fulltext(6674 kB)281 downloads
File information
File name FULLTEXT02.pdfFile size 6674 kBChecksum SHA-512
37f22e584a29abdc3e907f5c27b5dabcf5220098eeb484ea08188ce8eb67ecdac47e7caedbc5d8184b6f3e5dae2f9987fe7e811ebfa8958117d439d7e5039075
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Dahlström, CarlGiesen, Emma
By organisation
Building TechnologyBuilding Materials
Building TechnologiesMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 281 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 333 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf