Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental and ab initio studies of the novel piperidine-containing acetylene glycols
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF. KTH, Centres, SeRC - Swedish e-Science Research Centre.
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0002-8222-3157
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Identifiers
URN: urn:nbn:se:kth:diva-170357OAI: oai:DiVA.org:kth-170357DiVA: diva2:827907
Note

QS 2015

Available from: 2015-06-29 Created: 2015-06-29 Last updated: 2016-01-28Bibliographically approved
In thesis
1. Quantum Mechanical Calculations of Thermoelectrical Polymers and Organic Molecules
Open this publication in new window or tab >>Quantum Mechanical Calculations of Thermoelectrical Polymers and Organic Molecules
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The subject of the present licentiate thesis is density functional theorybased electronic structure calculations of organic thermoelectric materials and novel organic molecules. We used the Car-Parrinello molecular dynamics method in order to investigate the electronic structure of “green energy” and “greenchemistry” compounds.

First, we have investigated the electronic structure of the poly(3,4-ethylene-dioxythiophene) (PEDOT) and its derivatives - the best studied and successfully implemented by industry organic thermoelectric material. Its transparency, low toxicity and high stability in the oxidized state are combined withan ability to produce electrical current when applying a temperature gradient. This makes PEDOT a perfect “organic metal” and a first candidate for organic thermoelectrogenerators - devices that can produce “green energy” from a temperature difference. The average structures found in these quantum dynamical simulations agree well with earlier static electronic structure studies. The energy gap of two, four and six unit oligomers of PEDOT was calculated and was found to lie in the range of previous theoretical studies. We have also calculatedthe point-charge distributions along the polymer backbone in order to investigate the polaron formed by doping agents of PEDOT. Our analysis allowed us to predict possible localization of the charge in the center of the polymer chain. However, further calculations of the twelve unit PEDOT and its selenium and tellurium derivatives will provide more information. First-principles calculations for the tellurium derivative of PEDOT are here presented for the first time.

The second part of our investigation concerns theoretical calculations of novel piperidine-containing acetylene glycols. These molecules were newly synthesized by our experimental collaborators and are expected to provideplant growth stimulation properties, the same as its diacetylene analogs. We performed quantum mechanical calculations of four compounds, presented ananalysis of the highest occupied and lowest unoccupied molecular orbitals and collected detailed information on point-charges for further parametrization of novel molecules for future computational studies. According to these results, the low production yield found in the experiments cannot be attributed to chemical instability in these novel compounds.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. v, 46 p.
Series
TRITA-ICT 2015:01, 2015:01
Keyword
Quantum molecular dynamics, Car-Parrinello molecular dynamics, PEDOT, poly(3, 4-ethylenedioxythiophene)
National Category
Condensed Matter Physics Polymer Chemistry
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-168430 (URN)978-91-7595-542-1 (ISBN)
Presentation
2015-08-26, Sal C, Electrum, KTH-ICT, Kista, 10:10 (English)
Opponent
Supervisors
Projects
ScalTEG SSF
Note

QC 20150629

Available from: 2015-06-29 Created: 2015-06-03 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Elgammal, KarimHugosson, HåkanDelin, Anna

Search in DiVA

By author/editor
Mirsakiyeva, AminaElgammal, KarimHugosson, HåkanDelin, Anna
By organisation
Material Physics, MFSeRC - Swedish e-Science Research Centre

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 80 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf