Change search
ReferencesLink to record
Permanent link

Direct link
Cooling in the ALICE detector
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Applied Thermodynamics and Refrigeration.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

At CERN, the European Laboratory for Particle Physics in Geneva, Switzerland, a new modern particle accelerator called the LHC, Large Hadron Collider, is being projected. One of the four large detectors of the LHC, ALICE, consists of many sub-detectors. Temperature stability in ALICE is of great importance for the experiments performed here. 

In the ALICE sub-detector TPC, Time Projection Chamber, there is a great risk for thermal instability.  This will cause false data in the experiments, and therefore it is imperative to come to terms with the problem. One suggested solution is to install a water-cooled thermal screen around the TPC detector. The task of this thesis work was to design the new thermal screen and to evaluate its thermal abilities by computer simulations. Then, this chosen screen was to be simulated together with the TPC and its drift gas and the results studied. It was also desirable to see what would happen in case of parts of the thermal screen malfunctioning. 

Several different designs of the thermal screen have been made and analysed, and the most efficient model has been selected. The chosen model succeeded in keeping a fairly homogenous temperature level and also had good cooling abilities. All simulations were made using the computer software STAR-CD. The next phase of the project involved modelling the thermal screen around the TPC field cage containing drift gas of a certain temperature. 

The results of the simulations show that the performance of the cooling thermal screen is unsatisfactory. Although the screen itself seems to work efficiently, it does not succeed in keeping the TPC at an acceptable temperature level. The screen temperature rises more than the desired maximum of 0.5K. The scenario with parts of the thermal screen malfunctioning resulted in temperature peaks of +2K, which is unacceptable.

 The conclusions drawn are therefore that the thermal screen must be allowed to be thicker or a new solution must be found. The idea of a thermal screen is a good one, but the limitations in the design of the thermal screen must be redefined if the cooling problem is to be solved.

Place, publisher, year, edition, pages
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-170365OAI: diva2:830890
Subject / course
Refrigerating Engineering
Educational program
Master of Science - Sustainable Energy Engineering
Available from: 2015-06-30 Created: 2015-06-29 Last updated: 2015-06-30Bibliographically approved

Open Access in DiVA

fulltext(9170 kB)50 downloads
File information
File name FULLTEXT01.pdfFile size 9170 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Applied Thermodynamics and Refrigeration
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 50 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 72 hits
ReferencesLink to record
Permanent link

Direct link