Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Recommending new items to customers: A comparison between Collaborative Filtering and Association Rule Mining
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Rekommendera nya produkter till kunder : En jämförelsestudie mellan Collaborative Filtering och Association Rule Mining (Swedish)
Abstract [en]

E-commerce is an ever growing industry as the internet infrastructure continues to evolve. The benefits from a recommendation system to any online retail store are several. It can help customers to find what they need as well as increase sales by enabling accurate targeted promotions. Among many techniques that can form recommendation systems, this thesis compares Collaborative Filtering against Association Rule Mining, both implemented in combination with clustering. The suggested implementations are designed with the cold start problem in mind and are evaluated with a data set from an online retail store which sells clothing. The results indicate that Collaborative Filtering is the preferable technique while associated rules may still offer business value to stakeholders. However, the strength of the results is undermined by the fact that only a single data set was used. 

Abstract [sv]

E-handel är en växande marknad i takt med att Internet utvecklas samtidigt som antalet användare ständigt ökar. Antalet fördelar från rekommendationssytem som e-butiker kan dra nytta av är flera. Samtidigt som det kan hjälpa kunder att hitta vad de letar efter kan det utgöra underlag för riktade kampanjer, något som kan öka försäljning. Det finns många olika tekniker som rekommendationssystem kan vara byggda utifrån. Detta examensarbete ställer fokus på de två teknikerna Collborative Filtering samt Association Rule Mining och jämför dessa sinsemellan. Båda metoderna kombinerades med klustring och utformades för att råda bot på kallstartsproblemet. De två föreslagna implementationerna testades sedan mot en riktig datamängd från en e-butik med kläder i sitt sortiment. Resultaten tyder på att Collborative Filtering är den överlägsna tekniken samtidigt som det fortfarande finns ett värde i associeringsregler. Att dra generella slutsatser försvåras dock av att enbart en datamängd användes.

Place, publisher, year, edition, pages
2015. , 42 p.
Keyword [en]
Recommendation system, Association rule mining, Collaborative filtering, Cold start
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-170770OAI: oai:DiVA.org:kth-170770DiVA: diva2:839780
External cooperation
Granditude
Subject / course
Computer Science
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2015-07-10 Created: 2015-07-05 Last updated: 2015-07-10Bibliographically approved

Open Access in DiVA

fulltext(774 kB)189 downloads
File information
File name FULLTEXT01.pdfFile size 774 kBChecksum SHA-512
a088d629ac8e89a3d7ef844287ec15b58dde210247f64ecc5fbca4c381707e6fe4d149dec023db7b95914e825849d6027cb17a6b05c36c9d8495373d4f9f74d3
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 189 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 551 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf