Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Explicit FEM analysis of the deep drawing of paperboard
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.ORCID iD: 0000-0001-7657-3794
Show others and affiliations
2015 (English)In: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 89, 202-215 p., 2441Article in journal (Refereed) Published
Abstract [en]

An explicit finite element model of the deep-drawing of paperboard has been developed utilizing a custom yet simple material model which describes the anisotropy and plasticity of paperboard. The model was verified with a variety of tests and was then utilized to compare the punch force that was measured during the deep-drawing experiments to the punch force that was calculated during the deep-drawing simulations. All material parameters were calibrated based on individual experiments; thus, no parameter fitting was utilized to match the experimental deep-drawing results. The model was found to predict the experimental results with reasonable accuracy up to the point when wrinkling began to dominate the material response. Since most failures during paperboard deep-drawing occur before wrinkling begins to play a major role, this model can probably be utilized to study and predict the failure of deep-drawn paperboard cups. The overall trends and the effects of major process parameters are predicted by the model. The process parameters that were varied and compared for both experiments and simulations were: blankholder force, die temperature, and thickness. The model was utilized to discover that friction of the blankholder and die have significant effects on the punch force and thus the stress, implying that low-friction dies and blankholders can considerably reduce the failure probability and thus also improve the quality of deep-drawn paperboard cups.

Place, publisher, year, edition, pages
2015. Vol. 89, 202-215 p., 2441
Keyword [en]
Deep-drawing, Paperboard, 3D-forming, Simulation, FEM; Modelling
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-171041DOI: 10.1016/j.mechmat.2015.06.014ISI: 000359962400017Scopus ID: 2-s2.0-84936759657OAI: oai:DiVA.org:kth-171041DiVA: diva2:841445
Note

QC 20150805

Available from: 2015-07-13 Created: 2015-07-13 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
Open this publication in new window or tab >>Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

Abstract [sv]

Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser.

I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C.

I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas.

I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 25 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 576
Keyword
3-D forming, constitutive model, moisture, temperature, hydroforming, deep drawing, 3-D formning, finitaelement, konstitutiv modell, fukt, temperatur, hydroformning, djup dragning
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-173009 (URN)978-91-7595-670-1 (ISBN)
Presentation
2015-09-24, Hållfasthetsläras Seminarierummet, Teknikringen 8D, KTH, Stockholm, 12:15 (English)
Opponent
Supervisors
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved
2. 3-D Forming of Paper Materials
Open this publication in new window or tab >>3-D Forming of Paper Materials
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use as a packaging material, although traditional paper-based packaging is limited in its shape, complexity, and design. In order to better understand the deformation and failure mechanisms during 3-D forming, two experimental studies of paper materials have been conducted. Furthermore, constitutive modeling combined with explicit finite element modeling have been validated against numerous experimental setups and utilized to develop further understanding of 3-D forming processes.

Two experimental studies were necessary to further investigate and model the 3-D formability of paper materials. The combined effect of moisture and temperature on the uniaxial mechanical properties of paper was investigated, providing new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. Furthermore, the in-plane, biaxial yield and failure surfaces were experimentally investigated in both stress and strain space, which gave an operating window for 3-D forming processes as well as input parameters for the constitutive models.

The constitutive modeling of paper materials and explicit finite element modeling were directed towards two 3-D forming processes: deep drawing and hydroforming. The constitutive models were calibrated and validated against simple (typically uniaxial) mechanical tests, and the explicit finite element models (which utilize the developed constitutive models) were validated against 3-D forming experiments. Hand-made papers with fibers partially oxidized to dialcohol cellulose, which has greater extensibility than typical paper materials, was furthermore characterized, modeled, and 3-D formed as a demonstration of the potential of modified paper fiber products for 3-D forming applications.

Abstract [sv]

Papper har länge framgångsrikt använts som förpackningsmaterial, men traditionella pappers- och kartongförpackningar är begränsade i form och design. Två experimentella studier har utförts för att få bättre förståelse för deformations- och brottmekanismer under 3D formning. Resultat från konstitutivmodellering i kombination med explicit finit element modellering har validerats mot ett flertal experimentella uppställningar och använts för att utveckla bättre förståelse för 3D formningsprocesser.

Två experimentella studier var nödvändiga för att ytterligare undersöka och modellera pappersmaterials 3D formbarhet. I den första undersöktes den kombinerade effekten av fukt och temperatur på pappers enaxliga mekaniska egenskaper, vilket gav nya insikter om hur fukt och temperatur påverkar både de elastiska och de plastiska egenskaperna hos papper. I den andra har biaxiella (i planet) flyt- och brottytor undersökts experimentellt i både spännings- samt töjningsrymden, vilket gav ett processfönster för 3D formningsmetoder samt ingångsparametrar för de konstitutiva ekvationerna.

Konstitutiv modellering av pappersmateriel samt explicit finit element modellering riktades mot två 3D formningsprocesser: djupdragning och hydroformning. De konstitutiva modellerna kalibrerades och validerades mot enkla (oftast enaxliga) mekaniska experiment, och explicita finita elementmodeller (som utnyttjar de utvecklade konstitutiva modellerna) validerades mot 3D formningsexperiment. Handark med fibrer delvis oxiderade-reducerade till dialkohol cellulosa, som har större töjbarhet än andra pappersmateriel, har dessutom karakteriserats, modellerats, samt 3D formats som en demonstation av potentialen hos modifierade pappersfiberprodukter i 3D formning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 33 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0608
Keyword
3-D forming, finite element method, constitutive model, moisture, temperature, biaxial, hydroforming, deep drawing, 3D formning, finita elementmetoden, konstitutiv modell, fukt, temperatur, biaxiell, hydroformning, djupdragning
National Category
Paper, Pulp and Fiber Technology Applied Mechanics
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-199294 (URN)978-91-7729-250-0 (ISBN)
Public defence
2017-02-10, Sal F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20170104

Available from: 2017-01-04 Created: 2017-01-03 Last updated: 2017-01-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopusPublished version

Authority records BETA

Linvill, EricÖstlund, Sören

Search in DiVA

By author/editor
Linvill, EricÖstlund, Sören
By organisation
Solid Mechanics (Dept.)VinnExcellence Center BiMaC InnovationBiofibre Materials Centre, BiMaC
In the same journal
Mechanics of materials (Print)
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 262 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf