Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Improved Zernike-type phase contrast for transmission electron microscopy
KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Structural Biotechnology.ORCID iD: 0000-0002-0569-3374
2015 (English)In: Journal of Microscopy, ISSN 0022-2720, E-ISSN 1365-2818, Vol. 259, no 1, 74-78 p.Article in journal (Refereed) Published
Abstract [en]

Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image typical phase objects such as unstained biological molecules or cryosections of biological tissue. According to the original proposal discussed in Danev and Nagayama (2001) and references therein, the Zernike phase plate applies a phase shift of /2 to all scattered electron beams outside a given scattering angle and an image is recorded at Gaussian focus or slight underfocus (below Scherzer defocus). Alternatively, a phase shift of -/2 is applied to the central beam using the Boersch phase plate. The resulting image will have an almost perfect contrast transfer function (close to 1) from a given lowest spatial frequency up to a maximum resolution determined by the wave length, the amount of defocus and the spherical aberration of the microscope. In this paper, I present theory and simulations showing that this maximum spatial frequency can be increased considerably without loss of contrast by using a Zernike or Boersch phase plate that leads to a phase shift between scattered and unscattered electrons of only /4, and recording images at Scherzer defocus. The maximum resolution can be improved even more by imaging at extended Scherzer defocus, though at the cost of contrast loss at lower spatial frequencies. Lay description Zernike phase contrast has been recognized as a means of recording high-resolution images with high contrast using a transmission electron microscope. This imaging mode can be used to image specimens such as unstained biological molecules or sections of biological tissue. According to the original proposal, the Zernike phase plate applies a phase shift of /2 to all scattered electron beams outside a given scattering angle and an image is recorded at or close to focus. The resulting image will be an almost perfect representation of the specimen up to a maximum resolution determined by the energy of the electrons and certain optical parameters of the microscope. In this paper, I present theory and simulations showing that this maximum resolution can be increased considerably without loss of contrast by using a Zernike phase plate that leads to a phase shift between scattered and unscattered electrons of only /4, and recording images somewhat out of focus.

Place, publisher, year, edition, pages
2015. Vol. 259, no 1, 74-78 p.
National Category
Medical Biotechnology
Identifiers
URN: urn:nbn:se:kth:diva-170953DOI: 10.1111/jmi.12250ISI: 000356310200009PubMedID: 25865092Scopus ID: 2-s2.0-84930818127OAI: oai:DiVA.org:kth-170953DiVA: diva2:841500
Note

QC 20150713

Available from: 2015-07-13 Created: 2015-07-13 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Koeck, P. J. B.
By organisation
Structural Biotechnology
In the same journal
Journal of Microscopy
Medical Biotechnology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 26 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf