Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
THE TWO-PHASE FRACTIONAL OBSTACLE PROBLEM
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.).ORCID iD: 0000-0003-4309-9242
2015 (English)In: SIAM Journal on Mathematical Analysis, ISSN 0036-1410, E-ISSN 1095-7154, Vol. 47, no 3, 1879-1905 p.Article in journal (Refereed) Published
Abstract [en]

We study minimizers of the functional integral(+)(B1) vertical bar del u vertical bar(2)x(n)(a) dx + 2 integral(')(B1)(lambda + u(+) + lambda-u(-)) dx' for a is an element of (- 1, 1). The problem arises in connection with heat flow with control on the boundary. It can also be seen as a nonlocal analogue of the, by now well studied, two-phase obstacle problem. Moreover, when u does not change signs this is equivalent to the fractional obstacle problem. Our main results are the optimal regularity of the minimizer and the separation of the two free boundaries Gamma(+) = partial derivative'{u(center dot, 0) > 0} and Gamma(-) = partial derivative' {u(center dot, 0) < 0} when a >= 0.

Place, publisher, year, edition, pages
Society for Industrial and Applied Mathematics, 2015. Vol. 47, no 3, 1879-1905 p.
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-171331DOI: 10.1137/140974195ISI: 000357408600007OAI: oai:DiVA.org:kth-171331DiVA: diva2:843121
Note

QC 20150727

Available from: 2015-07-27 Created: 2015-07-27 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Lindgren, Erik

Search in DiVA

By author/editor
Lindgren, Erik
By organisation
Mathematics (Dept.)
In the same journal
SIAM Journal on Mathematical Analysis
Mathematics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf