Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experimental study of energy performance in low-temperature hydronic heating systems
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.ORCID iD: 0000-0001-8614-5806
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.ORCID iD: 0000-0001-5902-2886
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Fluid and Climate Technology.ORCID iD: 0000-0003-1882-3833
2015 (English)In: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 109, 108-114 p.Article in journal (Other academic) Published
Abstract [en]

Energy consumption, thermal environment and environmental impacts were analytically and experimentally studied for different types of heat emitters. The heat emitters studied were conventional radiator, ventilation radiator, and floor heating with medium-, low-, and very-low-temperature supply, respectively. The ventilation system in the lab room was a mechanical exhaust ventilation system that provided one air change per hour of fresh air through the opening in the external wall with a constant temperature of 5 °C, which is the mean winter temperature in Copenhagen. The parameters studied in the climate chamber were supply and return water temperature from the heat emitters, indoor temperature, and heat emitter surface temperature. Experiments showed that the mean supply water temperature for floor heating was the lowest, i.e. 30 °C, but it was close to the ventilation radiator, i.e. 33 °C. The supply water temperature in all measurements for conventional radiator was significantly higher than ventilation radiator and floor heating; namely, 45 °C. Experimental results indicated that the mean indoor temperature was close to the acceptable level of 22 °C in all cases. For energy calculations, it was assumed that all heat emitters were connected to a ground-source heat pump. Analytical calculations showed that using ventilation radiator and floor heating instead of conventional radiator resulted in a saving of 17% and 22% in heat pump's electricity consumption, respectively. This would reduce the CO2 emission from the building's heating system by 21 % for the floor heating and by 18% for the ventilation radiator compared to the conventional radiator.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 109, 108-114 p.
Keyword [en]
Low-temperature hydronic heating systems; Energy performance; Thermal environment; Experimental study; Ventilation radiator; Floor heating
National Category
Building Technologies
Identifiers
URN: urn:nbn:se:kth:diva-172002DOI: 10.1016/j.enbuild.2015.09.064ISI: 000367115300010Scopus ID: 2-s2.0-84944749414OAI: oai:DiVA.org:kth-172002DiVA: diva2:845174
Funder
Swedish Energy Agency
Note

QC 20160128

Available from: 2015-08-11 Created: 2015-08-11 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Low-Temperature Heating and Ventilation for Sustainability in Energy Efficient Buildings
Open this publication in new window or tab >>Low-Temperature Heating and Ventilation for Sustainability in Energy Efficient Buildings
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In 2013, the building sector consumed approximately 39 % of the total final energy use in Sweden. Energy used for heating and hot water was responsible for approximately 60 % of the total energy consumption in the building sector. Therefore, energy-efficient and renewable-based heating and ventilation systems have high potential for energy savings. The potentials studied in this thesis include the combination of a low-temperature heat emitter (supply temperature below 45 °C) with heat pump and/or seasonal thermal energy storage, and variable air volume ventilation system. The main aim of this thesis was to evaluate energy savings and indoor air quality when those energy-efficient and sustainable heating and ventilation systems were implemented in buildings. For this purpose, on-site measurements, lab tests, analytical models, and building energy simulation tool IDA Indoor Climate and Energy 4 were used.

Annual on-site measurements for five new two-family houses with low- and very-low-temperature heat emitters connected to an exhaust air heat pump showed  that  between  45–51 kWh∙m-2 energy was used  to  produce  and transport supply water for space heating and domestic hot water. Statistical data showed that these values are 39–46 % lower compared to the energy requirement for the same usage  which is, 84 kWh∙m-2)  in  an  average Swedish new single- and two-family house.

Annual on-site measurements for five new two-family houses with low- and very-low-temperature heat emitters connected to an exhaust air heat pump showed that between 45–51 kWh∙m-2 energy was used to produce and transport supply water for space heating and domestic hot water. Statistical data showed that these values are 39–46 % lower compared to the energy requirement for the same usage (which is, 84 kWh∙m-2) in an average Swedish new single- and two-family house.

In order to compare the energy performance of very-low- and low-temperature heat emitters with medium-temperature heat emitters under the same condition, lab tests were conducted in a climate chamber facility at Technical University of Denmark (DTU). To cover the heat demand of 20 W·m-2 by active heating, measurements showed that the required supply water temperatures were 45 ºC for the conventional radiator, 33 ºC in ventilation radiator and 30 ºC in floor heating. This 12–15 ºC temperature reduction with ventilation radiator and floor heating resulted in 17–22 % savings in energy consumption compared to a reference case with conventional radiator.

Reducing the supply temperature to the building’s heating system allows using more renewable and low-quality heat sources. In this thesis, the application of seasonal thermal energy storage in combination with heat pump in a building with very-low-, low-, and medium-temperature heat emitters was investigated. Analytical model showed that using a 250 m3 hot water seasonal storage tank connected to a 50 m2 solar collector and a heat pump resulted in 85–92 % of the total heat demand being covered by solar energy.

In addition to the heating system, this thesis also looked at ventilation system in terms of implementing variable (low) air volume ventilation instead of a constant (high) flow in new and retrofitted old buildings. The analytical model showed that, for new buildings with high volatile organic compound concentration during initial years of construction, decreasing the ventilation rate to 0.1 L·s-1·m-2 during the entire un-occupancy period (from 8:00–18:00) creates unacceptable indoor air quality when home is occupied at  18:00.  So,  in  order  to  create  acceptable  indoor  air  quality  when  the occupants come home, a return to the normal ventilation requirements was suggested to take place two hours before the home was occupied. This eight- hour ventilation reduction produced savings of 20 % for ventilation heating and 30 % for electricity consumption by ventilation fan.

In addition, the influence of different ventilation levels on indoor air quality and energy savings was studied experimentally and analytically in a single- family house occupied by two adults and one infant. Carbon dioxide (CO2) concentration as an indicator of indoor air quality was considered in order to find  appropriate  ventilation  rates.  Measurements  showed  that,  with  an 0.20 L∙s-1∙m-2  ventilation rate, the CO2   level  was always below 950 ppm, which shows that this level is sufficient for the reference building (CO2 lower than 1000 ppm is acceptable). Calculations showed that low ventilation rates of 0.20 L∙s1∙m-2 caused 43 % savings of the combined energy consumption for  ventilation  fan  and  ventilation  heating  compared  to  the  cases  with 0.35 L∙s-1∙m-2  as a normal ventilation rate recommended by BBR (Swedish Building Regulations).

 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 40 p.
Keyword
Low-temperature heating system, Energy savings, Seasonal thermal energy storage, Variable air volume ventilation system, Indoor air quality
National Category
Building Technologies
Identifiers
urn:nbn:se:kth:diva-170065 (URN)978-91-7595-650-3 (ISBN)
Public defence
2015-09-04, M3, Brinellvägen 64, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20150626

Available from: 2015-06-26 Created: 2015-06-26 Last updated: 2015-08-11Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Hesaraki, ArefehPloskic, AdnanHolmberg, Sture

Search in DiVA

By author/editor
Hesaraki, ArefehPloskic, AdnanHolmberg, Sture
By organisation
Fluid and Climate Technology
In the same journal
Energy and Buildings
Building Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf