Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Support Vector Machine Algorithm applied to Industrial Robot Error Recovery
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Support Vector Machine algoritm tillämpad inom felhantering på industrirobotar (Swedish)
Abstract [en]

A Machine Learning approach for error recovery in an industrial robot for the plastic mold industry isproposed in this master thesis project. The goal was to improve the present error recovery method byproviding a learning algorithm to the system instead of using the traditional algorithm-based control.The chosen method was the Support Vector Machine (SVM) due to the robustness and the goodgeneralization performance in real-world applications. Furthermore, SVM generates good classifierseven with a minimal number of training examples. In production, there will be no need for a humanoperator to train the SVM with hundreds or thousands of training examples to achieve goodgeneralization. The advantage with SVM is that good accuracy can be achieved with only a couple oftraining examples if the training examples are well designed.Firstly, the algorithm proposed was evaluated experimentally. The experiments consisted of correcthandling of classification performance on training examples, which was a hand-coded data set createdwith defined in- and output signals. Secondly, the results from the experiments were tested in asimulated environment. By using only a few training examples the SVM reached perfect performance.In conclusion, SVM is a good tool for classification and a suitable method for error recovery on theindustrial robot for the plastic mold industry.

Abstract [sv]

En maskininlärningsstrategi för felhantering på industrirobotar inom plastformindustrin presenteras idetta examensarbete. Målet var att förbättra den nuvarande felhanteringen genom att applicera eninlärningsalgoritm istället för det traditionella förprogrammerade systemet till roboten. Den valdametoden är Support Vector Machine (SVM), då SVM är en robust metod som ger bra prestanda iverkliga tillämpningar. SVM genererar bra klassificerare även med ett minimalt antal träningsexempel.Fördelen med SVM är att god precision kan uppnås med bara ett par träningsexempel förutsatt attträningsexemplen är väldesignade. Detta betyder att operatörerna i produktionen inte behöver tränahundratals eller tusentals träningsexempel med SVM för att uppnå en god generalisering.I projektet utvärderasdes SVM metoden experimentellt varefter den testades i ett simuleringsprogram.Resultatet visade att SVM metoden gav en perfekt precision med hjälp av endast ett fåtal träningsdata.En slutsats från denna studie är att SVM är en bra metod för klassificering och lämplig för felhanteringpå industrirobotar inom plastindustrin.

Place, publisher, year, edition, pages
2015. , 40 p.
Keyword [en]
Support Vector Machine, SVM, Machine Learning, industrial robot, robot, error recovery
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-172331OAI: oai:DiVA.org:kth-172331DiVA: diva2:846825
External cooperation
ABB Shanghai Ltd.
Educational program
Master of Science in Engineering - Electrical Engineering
Supervisors
Examiners
Available from: 2015-08-21 Created: 2015-08-18 Last updated: 2015-08-21Bibliographically approved

Open Access in DiVA

Support Vector Machine Algorithm applied to Industrial Robot Error Recovery(1299 kB)304 downloads
File information
File name FULLTEXT01.pdfFile size 1299 kBChecksum SHA-512
e7277dc1f23e63b834705257717a27bcaf446c5fecf155b834e0f46bd00f350c8f66b3bbc3098f9172dc80126cf156887eed45ac3e47aadb386e3ad38d74cf85
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 304 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 529 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf