Change search
ReferencesLink to record
Permanent link

Direct link
Response of cable-stayed and suspension bridges to moving vehicles: Analysis methods and practical modeling techniques
KTH, Superseded Departments, Structural Engineering.ORCID iD: 0000-0002-5447-2068
1998 (English)Doctoral thesis, monograph (Other scientific)
Abstract [en]

This thesis presents a state-of-the-art-review and twodifferent approaches for solving the moving load problem ofcable-stayed and suspension bridges.

The first approach uses a simplified analysis method tostudy the dynamic response of simple cable-stayed bridgemodels. The bridge is idealized as a Bernoulli-Euler beam onelastic supports with varying support stiffness. To solve theequation of motion of the bridge, the finite difference methodand the mode superposition technique are used.

The second approach is based on the nonlinear finite elementmethod and is used to study the response of more realisticcable-stayed and suspension bridge models considering exactcable behavior and nonlinear geometric effects. The cables aremodeled using a two-node catenary cable element derived using"exact" analytical expressions for the elastic catenary. Twomethods for evaluating the dynamic response are presented. Thefirst for evaluating the linear traffic load response using themode superposition technique and the deformed dead load tangentstiffness matrix, and the second for the nonlinear traffic loadresponse using the Newton-Newmark algorithm.

The implemented programs have been verified by comparinganalysis results with those found in the literature and withresults obtained using a commercial finite element code.Several numerical examples are presented including one for theGreat Belt suspension bridge in Denmark. Parametric studieshave been conducted to investigate the effect of, among others,bridge damping, bridge-vehicle interaction, cables vibration,road surface roughness, vehicle speed, and tuned mass dampers.From the numerical study, it was concluded that road surfaceroughness has great influence on the dynamic response andshould always be considered. It was also found that utilizingthe dead load tangent stiffness matrix, linear dynamic trafficload analysis give sufficiently accurate results from theengineering point of view.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology , 1998. , viii, 194 p.
Trita-BKN. Bulletin, ISSN 1103-4270 ; 44
Keyword [en]
cable-stayed bridge, suspension bridge, Great Belt suspension bridge, bridge moving loads, traffic-induced vibrations bridge-vehicle interaction, dynamic analysis, cable element, finite element analysis, finite diffrence method, tuned mass damper
National Category
Engineering and Technology
URN: urn:nbn:se:kth:diva-2764ISBN: 99-2895939-0OAI: diva2:8475
Public defence
1999-02-12, 00:00 (English)
QC 20100511Available from: 2000-01-01 Created: 2000-01-01 Last updated: 2011-07-11Bibliographically approved

Open Access in DiVA

fulltext(3378 kB)11318 downloads
File information
File name FULLTEXT01.pdfFile size 3378 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Karoumi, Raid
By organisation
Structural Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 11318 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1276 hits
ReferencesLink to record
Permanent link

Direct link