Change search
ReferencesLink to record
Permanent link

Direct link
Finding seminal scientific publications with graph mining
KTH, School of Computer Science and Communication (CSC).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Användning av grafanalys för att hitta betydelsefulla vetenskapliga artiklar (Swedish)
Abstract [en]

We investigate the applicability of network analysis to the problem of finding seminal publications in scientific publishing. In particular, we focus on the network measures betweenness centrality, the so-called backbone graph, and the burstiness of citations. The metrics are evaluated using precision-related scores with respect to gold standards based on fellow programmes and manual annotation. Citation counts, PageRank, and random selection are used as baselines. We find that the backbone graph provides us with a way to possibly discover seminal publications with low citation count, and combining betweenness and burstiness gives results on par with citation count.

Abstract [sv]

I detta examensarbete undersöks det huruvida analys av citeringsgrafer kan användas för att finna betydelsefulla vetenskapliga publikationer. Framför allt studeras ”betweenness”-centralitet, den så kallade ”backbone”-grafen samt ”burstiness” av citeringar. Dessa mått utvärderas med hjälp av precisionsmått med avseende på guldstandarder baserade på ’fellow’-program samt via manuell annotering. Antal citeringar, PageRank, och slumpmässigt urval används som jämförelse. Resultaten visar att ”backbone”-grafen kan bidra till att eventuellt upptäcka betydelsefulla publikationer med ett lågt antal citeringar samt att en kombination av ”betweenness” och ”burstiness” ger resultat i nivå med de man får av att räkna antal citeringar.

Place, publisher, year, edition, pages
Keyword [en]
citation network, graph mining, network, seminal, centrality
National Category
Computer Science
URN: urn:nbn:se:kth:diva-172382OAI: diva2:847503
Educational program
Master of Science in Engineering - Computer Science and Technology
Available from: 2015-08-21 Created: 2015-08-20 Last updated: 2015-08-21Bibliographically approved

Open Access in DiVA

fulltext(2399 kB)105 downloads
File information
File name FULLTEXT01.pdfFile size 2399 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 82 hits
ReferencesLink to record
Permanent link

Direct link