Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolution of the Ultrafast Photoluminescence of Colloidal Silicon Nanocrystals with Changing Surface Chemistry
KTH, School of Information and Communication Technology (ICT), Materials- and Nano Physics, Material Physics, MF.ORCID iD: 0000-0003-2562-0540
Show others and affiliations
2015 (English)In: ACS PHOTONICS, ISSN 2330-4022, Vol. 2, no 5, 595-605 p.Article in journal (Refereed) Published
Abstract [en]

The role of surface species in the optical properties of silicon nanocrystals (SiNCs) is the subject of intense debate. Changes in photoluminescence (PL) energy following hydrosilylation of SiNCs with alkyl-terminated surfaces are most often ascribed to enhanced quantum confinement in the smaller cores of oxidized NCs or to oxygen-induced defect emission. We have investigated the PL properties of alkyl-functionalized SiNCs prepared using two related methods: thermal and photochemical hydrosilylation. Photochemically functionalized SiNCs exhibit higher emission energies than the thermally functionalized equivalent. While microsecond lifetime emission attributed to carrier recombination within the NC core was observed from all samples, much faster, size-independent nanosecond lifetime components were only observed in samples prepared using photochemical hydrosilylation that possessed substantial surface oxidation. In addition, photochemically modified SiNCs exhibit higher absolute photoluminescent quantum yields (AQY), consistent with radiative recombination processes occurring at the oxygen-based defects. Correlating spectrally- and time-resolved PL measurements and XPS-derived relative surface oxidation for NCs prepared using different photoassisted hydrosilylation reaction times provides evidence the PL blue-shift as well as the short-lived PL emission observed for photochemically functionalized SiNCs are related to the relative concentration of oxygen surface defects.

Place, publisher, year, edition, pages
2015. Vol. 2, no 5, 595-605 p.
Keyword [en]
silicon nanocrystals, photoluminescence, nanosecond lifetime, surface functionalization
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:kth:diva-172249DOI: 10.1021/acsphotonics.5b00143ISI: 000355066900006Scopus ID: 2-s2.0-84930202369OAI: oai:DiVA.org:kth-172249DiVA: diva2:847836
Funder
Swedish Research Council
Note

QC 20150821

Available from: 2015-08-21 Created: 2015-08-14 Last updated: 2015-08-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Sychugov, IlyaLinnros, Jan

Search in DiVA

By author/editor
Sychugov, IlyaLinnros, Jan
By organisation
Material Physics, MF
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 79 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf