Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The dynamics of a capsule in a wall-bounded oscillating shear flow
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Ecole Polytech, F-91128 Palaiseau, France.
KTH, School of Engineering Sciences (SCI), Mechanics, Physicochemical Fluid Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-4346-4732
2015 (English)In: Physics of fluids, ISSN 1070-6631, E-ISSN 1089-7666, Vol. 27, no 7, 071902Article in journal (Refereed) Published
Abstract [en]

The motion of an initially spherical capsule in a wall-bounded oscillating shear flow is investigated via an accelerated boundary integral implementation. The neo-Hookean model is used as the constitutive law of the capsule membrane. The maximum wall-normal migration is observed when the oscillation period of the imposed shear is of the order of the relaxation time of the elastic membrane; hence, the optimal capillary number scales with the inverse of the oscillation frequency and the ratio agrees well with the theoretical prediction in the limit of high-frequency oscillation. The migration velocity decreases monotonically with the frequency of the applied shear and the capsule-wall distance. We report a significant correlation between the capsule lateral migration and the normal stress difference induced in the flow. The periodic variation of the capsule deformation is roughly in phase with that of the migration velocity and normal stress difference, with twice the frequency of the imposed shear. The maximum deformation increases linearly with the membrane elasticity before reaching a plateau at higher capillary numbers when the deformation is limited by the time over which shear is applied in the same direction and not by the membrane deformability. The maximum membrane deformation scales as the distance to the wall to the power 1/3 as observed for capsules and droplets in near-wall steady shear flows.

Place, publisher, year, edition, pages
2015. Vol. 27, no 7, 071902
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-172726DOI: 10.1063/1.4926675ISI: 000358872200004Scopus ID: 2-s2.0-84937598284OAI: oai:DiVA.org:kth-172726DiVA: diva2:849309
Funder
EU, European Research Council, ERC simcomics-280117, ERC-2013-CoG-616186
Note

QC 20150828

Available from: 2015-08-28 Created: 2015-08-27 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Brandt, Luca

Search in DiVA

By author/editor
Zhu, LaiLaiRabault, JeanBrandt, Luca
By organisation
Physicochemical Fluid MechanicsLinné Flow Center, FLOW
In the same journal
Physics of fluids
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 43 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf