Change search
ReferencesLink to record
Permanent link

Direct link
ELM induced tungsten melting and its impact on tokamak operation
Show others and affiliations
2015 (English)In: Journal of Nuclear Materials, ISSN 0022-3115, E-ISSN 1873-4820, Vol. 463, 78-84 p.Article in journal (Refereed) Published
Abstract [en]

In JET-ILW dedicated melt exposures were performed using a sequence of 3MA/2.9T H-Mode JET pulses with an input power of P-IN = 23 MW, a stored energy of similar to 6 MJ and regular type I ELMs at Delta W-ELM = 0.3 MJ and f(ELM) similar to 30 Hz. In order to assess the risk of starting ITER operations with a full W divertor, one of the task was to measure the consequences of W transients melting due to ELMs. JET is the only tokamak able to produce transients/ ELMs large enough (>300 kJ per ELM) to facilitate melting of tungsten. Such ELMs are comparable to mitigated ELMs expected in ITER. By moving the outer strike point (OSP) onto a dedicated leading edge the base temperature was raised within similar to 1 s to allow transient ELM-driven melting during the subsequent 0.5 s. Almost 1 mm (similar to 6 mm(3)) of W was moved by similar to 150 ELMs within 5 subsequent discharges. Significant material losses in terms of ejections into the plasma were not observed. There is indirect evidence that some small droplets (similar to 80 mu m) were ejected. The impact on the main plasma parameters is minor and no disruptions occurred. The W-melt gradually moved along the lamella edge towards the high field side, driven by j x B forces. The evaporation rate determined is 100 times less than expected from steady state melting and thus only consistent with transient melting during individual ELMs. IR data, spectroscopy, as well as melt modeling point to transient melting. Although the type of damage studied in these JET experiments is unlikely to be experienced in ITER, the results do strongly support the design strategy to avoid exposed edges in the ITER divertor. The JET experiments required a surface at normal incidence and considerable pre-heating to produce tungsten melting. They provide unique experimental evidence for the absence of significant melt splashing at events resembling mitigated ELMs on ITER and establish a unique experimental benchmark for the simulations being used to study transient shallow melting on ITER W divertor PFUs.

Place, publisher, year, edition, pages
2015. Vol. 463, 78-84 p.
National Category
Fusion, Plasma and Space Physics
URN: urn:nbn:se:kth:diva-172686DOI: 10.1016/j.jnucmat.2014.08.062ISI: 000358467200012ScopusID: 2-s2.0-84937724656OAI: diva2:850237

QC 20150901

Available from: 2015-09-01 Created: 2015-08-27 Last updated: 2015-09-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Frassinetti, Lorenzo
By organisation
Fusion Plasma Physics
In the same journal
Journal of Nuclear Materials
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 52 hits
ReferencesLink to record
Permanent link

Direct link