Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.), Solid Mechanics (Div.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.ORCID iD: 0000-0001-7657-3794
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

Abstract [sv]

Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser.

I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C.

I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas.

I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. , 25 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 576
Keyword [en]
3-D forming, constitutive model, moisture, temperature, hydroforming, deep drawing
Keyword [sv]
3-D formning, finitaelement, konstitutiv modell, fukt, temperatur, hydroformning, djup dragning
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-173009ISBN: 978-91-7595-670-1 (print)OAI: oai:DiVA.org:kth-173009DiVA: diva2:851638
Presentation
2015-09-24, Hållfasthetsläras Seminarierummet, Teknikringen 8D, KTH, Stockholm, 12:15 (English)
Opponent
Supervisors
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved
List of papers
1. The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper
Open this publication in new window or tab >>The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper
2014 (English)In: Experimental mechanics, ISSN 0014-4851, E-ISSN 1741-2765, Vol. 54, no 8, 1329-1341 p.Article in journal (Refereed) Published
Abstract [en]

To model advanced 3-D forming strategies for paper materials, the effects of environmental conditions on the mechanical behavior must be quantitatively and qualitatively understood. A tensile test method has been created, verified, and implemented to test paper at various moisture content and temperature levels. Testing results for one type of paper for moisture contents from 6.9 to 13.8 percent and temperatures from 23 to 168 degrees Celsius are presented and discussed. Coupled moisture and temperature effects have been discovered for maximum stress. Uncoupled effects have been discovered for elastic modulus, tangent modulus, hardening modulus, strain at break, tensile energy absorption (TEA), and approximate plastic strain. A hyperbolic tangent function is also utilized which captures the entire one-dimensional stress-strain response of paper. The effects of moisture and temperature on the three coefficients in the hyperbolic tangent function may be assumed to be uncoupled, which may simplify the development of moisture- and temperature-dependent constitutive models. All parameters were affected by both moisture and temperature with the exception of TEA, which was found to only be significantly dependent on temperature.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2014
Keyword
Moisture, Temperature, Elastic properties, Plastic properties, Forming, Paper
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-154368 (URN)10.1007/s11340-014-9898-7 (DOI)000341812900003 ()2-s2.0-84907704336 (Scopus ID)
Note

QC 20141020

Available from: 2014-10-20 Created: 2014-10-20 Last updated: 2017-12-05Bibliographically approved
2. Explicit FEM analysis of the deep drawing of paperboard
Open this publication in new window or tab >>Explicit FEM analysis of the deep drawing of paperboard
Show others...
2015 (English)In: Mechanics of materials (Print), ISSN 0167-6636, E-ISSN 1872-7743, Vol. 89, 202-215 p., 2441Article in journal (Refereed) Published
Abstract [en]

An explicit finite element model of the deep-drawing of paperboard has been developed utilizing a custom yet simple material model which describes the anisotropy and plasticity of paperboard. The model was verified with a variety of tests and was then utilized to compare the punch force that was measured during the deep-drawing experiments to the punch force that was calculated during the deep-drawing simulations. All material parameters were calibrated based on individual experiments; thus, no parameter fitting was utilized to match the experimental deep-drawing results. The model was found to predict the experimental results with reasonable accuracy up to the point when wrinkling began to dominate the material response. Since most failures during paperboard deep-drawing occur before wrinkling begins to play a major role, this model can probably be utilized to study and predict the failure of deep-drawn paperboard cups. The overall trends and the effects of major process parameters are predicted by the model. The process parameters that were varied and compared for both experiments and simulations were: blankholder force, die temperature, and thickness. The model was utilized to discover that friction of the blankholder and die have significant effects on the punch force and thus the stress, implying that low-friction dies and blankholders can considerably reduce the failure probability and thus also improve the quality of deep-drawn paperboard cups.

Keyword
Deep-drawing, Paperboard, 3D-forming, Simulation, FEM; Modelling
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-171041 (URN)10.1016/j.mechmat.2015.06.014 (DOI)000359962400017 ()2-s2.0-84936759657 (Scopus ID)
Note

QC 20150805

Available from: 2015-07-13 Created: 2015-07-13 Last updated: 2017-12-04Bibliographically approved
3. Parametric Study of Hydroforming of Paper Materials using the Explicit Finite Element Method with a Moisture-and Temperature-Dependent Constitutive Model
Open this publication in new window or tab >>Parametric Study of Hydroforming of Paper Materials using the Explicit Finite Element Method with a Moisture-and Temperature-Dependent Constitutive Model
2015 (English)Report (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 29 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 575
National Category
Materials Engineering
Identifiers
urn:nbn:se:kth:diva-173114 (URN)
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved

Open Access in DiVA

Thesis(731 kB)298 downloads
File information
File name FULLTEXT01.pdfFile size 731 kBChecksum SHA-512
8932fdcca4efca89be79fc417c6c1411004ee2d31bcf702e373ee7bc78e6ea824f2a69070d841d50ba4e281937b51cba665eb40b4b17e53f4f6b2ce4b3c3aa1b
Type fulltextMimetype application/pdf

Authority records BETA

Linvill, Eric

Search in DiVA

By author/editor
Linvill, Eric
By organisation
Solid Mechanics (Div.)VinnExcellence Center BiMaC InnovationBiofibre Materials Centre, BiMaC
Paper, Pulp and Fiber Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 298 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1125 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf