Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Parametric Study of Hydroforming of Paper Materials using the Explicit Finite Element Method with a Moisture-and Temperature-Dependent Constitutive Model
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.ORCID iD: 0000-0001-7657-3794
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). (BiMaC Innovation)ORCID iD: 0000-0001-8699-7910
2015 (English)Report (Other academic)
Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. , 29 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 575
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-173114OAI: oai:DiVA.org:kth-173114DiVA: diva2:851711
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved
In thesis
1. Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
Open this publication in new window or tab >>Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

Abstract [sv]

Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser.

I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C.

I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas.

I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 25 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 576
Keyword
3-D forming, constitutive model, moisture, temperature, hydroforming, deep drawing, 3-D formning, finitaelement, konstitutiv modell, fukt, temperatur, hydroformning, djup dragning
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-173009 (URN)978-91-7595-670-1 (ISBN)
Presentation
2015-09-24, Hållfasthetsläras Seminarierummet, Teknikringen 8D, KTH, Stockholm, 12:15 (English)
Opponent
Supervisors
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Linvill, EricÖstlund, Sören

Search in DiVA

By author/editor
Linvill, EricÖstlund, Sören
By organisation
Solid Mechanics (Dept.)VinnExcellence Center BiMaC InnovationBiofibre Materials Centre, BiMaC
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 218 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf