Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Convolutive Features for Transmission and Storage: Machine Learning Summer School
KTH, School of Electrical Engineering (EES), Communication Networks. KTH, School of Electrical Engineering (EES), Centres, ACCESS Linnaeus Centre. (LCN)
(English)Manuscript (preprint) (Other academic)
Keyword [en]
Machine Learning; Matrix Factorization; Computer Networks
National Category
Signal Processing
Research subject
Applied and Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-173000OAI: oai:DiVA.org:kth-173000DiVA: diva2:852051
Projects
ELEVATE Irish Research Council International Career Development Fellowship co-funded by Marie Curie Actions award: ELEVATEPD/2014/62.
Note

Ruairí de Fréin, 2015 Machine Learning Summer School, Max Planck Institute for Intelligent Systems, Tuebingen, Germany. QS 2015

Available from: 2015-09-07 Created: 2015-09-06 Last updated: 2015-09-15Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
de Fréin, Ruairí
By organisation
Communication NetworksACCESS Linnaeus Centre
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 82 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf