Change search
ReferencesLink to record
Permanent link

Direct link
A cascaded life cycle: reuse of electric vehicle lithium-ion battery packs in energy storage systems
Energy, Mining and Environment, National Research Council Canada.
School of Environment, Enterprise and Development|, University of Waterloo.
Department of Chemical Engineering, University of Waterloo.
Department of Mechanical and Mechatronics Engineering, University of Waterloo.
Show others and affiliations
2015 (English)In: The International Journal of Life Cycle Assessment, ISSN 0948-3349, E-ISSN 1614-7502Article in journal (Refereed) Epub ahead of print
Abstract [en]


Lithium-ion (Li-ion) battery packs recovered from end-of-life electric vehicles (EV) present potential technological, economic and environmental opportunities for improving energy systems and material efficiency. Battery packs can be reused in stationary applications as part of a “smart grid”, for example to provide energy storage systems (ESS) for load leveling, residential or commercial power. Previous work on EV battery reuse has demonstrated technical viability and shown energy efficiency benefits in energy storage systems modeled under commercial scenarios. The current analysis performs a life cycle assessment (LCA) study on a Li-ion battery pack used in an EV and then reused in a stationary ESS.


A complex functional unit is used to combine energy delivered by the battery pack from the mobility function and the stationary ESS. Various scenarios of cascaded “EV mobility plus reuse in stationary clean electric power scenarios” are contrasted with “conventional system mobility with internal combustion engine vehicles plus natural gas peaking power.” Eight years are assumed for first use; with 10 years for reuse in the stationary application. Operational scenarios and environmental data are based on real time-of-day and time-of-year power use. Additional data from LCA databases are utilized. Ontario, Canada, is used as the geographic baseline; analysis includes sensitivity to the electricity mix and battery degradation. Seven environmental categories are assessed using ReCiPe.

Results and discussion

Results indicate that the manufacturing phase of the Li-ion battery will still dominate environmental impacts across the extended life cycle of the pack (first use in vehicle plus reuse in stationary application). For most impact categories, the cascaded use system appears significantly beneficial compared to the conventional system. By consuming clean energy sources for both use and reuse, global and local environmental stress reductions can be supported. Greenhouse gas advantages of vehicle electrification can be doubled by extending the life of the EV batteries, and enabling better use of off-peak low-cost clean electricity or intermittent renewable capacity. However, questions remain concerning implications of long-duration use of raw material resources employed before potential recycling.


Li-ion battery packs present opportunities for powering both mobility and stationary applications in the necessary transition to cleaner energy. Battery state-of-health is a considerable determinant in the life cycle performance of a Li-ion battery pack. The use of a complex functional unit was demonstrated in studying a component system with multiple uses in a cascaded application.

Place, publisher, year, edition, pages
Keyword [en]
Electric vehicle Energy storage systems (ESS), Life cycle assessment (LCA), Li-ion battery, Resource efficiency, Reuse, Second use
National Category
Other Environmental Engineering
Research subject
Industrial Ecology; Energy Technology
URN: urn:nbn:se:kth:diva-173252DOI: 10.1007/s11367-015-0959-7OAI: diva2:852361

QP 201509

Available from: 2015-09-08 Created: 2015-09-08 Last updated: 2015-09-10Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Ahmadi Achachlouei, Mohammad
By organisation
Environmental Strategies Research (fms)Centre for Sustainable Communications, CESC
In the same journal
The International Journal of Life Cycle Assessment
Other Environmental Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 318 hits
ReferencesLink to record
Permanent link

Direct link