Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Metaloxid katalysatorer för oxidering av kolmonoxid och förbränning av sot
KTH, School of Chemical Science and Engineering (CHE).
2015 (Swedish)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Metal oxide catalysts for CO oxidation and soot combustion (English)
Abstract [en]

The aim of this work was to manufacture and test non noble metal catalysts for CO oxidation and soot combustion. The feeding gases consist in the products of the combustion diesel in a Reformtech heater. These gases contain CO, CO2, H2O as well as small amounts of NOx and hydrocarbons.

Two different catalysts were prepared for CO oxidation, based on cobalt oxide supported on ceria. 12Co/CeO2 with 12% weight of cobalt and 15CoOx/CeO2 with 15%. The first one was prepared by impregnation of cobalt nitrates in cerium oxide support; the second one was prepared by co-precipitation of cobalt and cerium nitrates.

Another catalyst called 12Co4.5K/CeO2, with 12% cobalt and 4.5% potassium, was made for the simultaneous combustion of soot and oxidation of CO. The base also consisted in cobalt oxide supported on ceria, but with the addition of potassium which could stabilize the cobalt oxide particles.

Both co-precipitation and impregnation methods gave the desired catalyst structure in the CO oxidation catalysts and both catalysts (12Co/CeO2 and 15CoOx/CeO2) showed activity. Nevertheless, the activity was lower than desired due to low surface area and mass transfer limitations. The catalysts also deactivated in less than three hours on stream, probably due to poisoning.

The co-precipitation method for the 12Co4.5K/CeO2 catalyst gave the desired cobalt and cerium oxides, but no conclusion can be drawn regarding potassium since it was not shown in the XRD tests.

The catalyst for both CO oxidation and soot combustion (12Co4.5K/CeO2) showed no activity for any of the reactions. Nevertheless, the tests performed to test the soot combustion ability were not conclusive and should be improved in future studies.

Place, publisher, year, edition, pages
2015. , 95 p.
Keyword [en]
CO oxidation, cobalt oxide, ceria, soot combustion, diesel.
National Category
Other Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-173384OAI: oai:DiVA.org:kth-173384DiVA: diva2:852902
Available from: 2015-09-10 Created: 2015-09-10 Last updated: 2015-10-07Bibliographically approved

Open Access in DiVA

fulltext(5192 kB)160 downloads
File information
File name FULLTEXT01.pdfFile size 5192 kBChecksum SHA-512
b6edf8132155db60227388b43168b07dd23d05e5b5045c10808ccd83f498e3c79e3cc3f70023235967c5c0bcd855e0a9b779596be6e2980c90957b1bbf1f56a7
Type fulltextMimetype application/pdf

By organisation
School of Chemical Science and Engineering (CHE)
Other Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 160 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf