Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Simulation of semi-crystalline polyethylene: Effect of short-chain branching on tie chains and trapped entanglements
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.ORCID iD: 0000-0001-8153-2778
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology. Columbia University, United States.
KTH, School of Chemical Science and Engineering (CHE), Fibre and Polymer Technology.
Show others and affiliations
2015 (English)In: Polymer, ISSN 0032-3861, E-ISSN 1873-2291, Vol. 72, p. 177-184Article in journal (Refereed) Published
Abstract [en]

A Monte-Carlo simulation method for assessing the tie chain and trapped entanglement concentration in linear polyethylene was extended to enable the simulation of explicitly branched polyethylene. A subroutine was added to the model making possible the incorporation of different branch lengths and distributions. In addition, the microstructure of branched polyethylene was considered to be made of lamellar stacks of different thicknesses, acknowledging the segregation phenomenon during crystallization. Also, based on complete exclusion of bulky branches from the crystal lattice, a 'pull-out' mechanism was developed for the relaxation of branched parts of polyethylene chains in the vicinity of the crystal layer. Simulations of two series of real polyethylene samples showed the effect of short-chain branching on the concentrations of tie chains and trapped entanglements. Introducing a few branches to an unbranched polyethylene increased the concentration of inter-lamellar connections significantly. This effect decayed if the number of branches was further increased. The tracking of the position of all the carbon atoms during the crystallization process was implemented in the model, making the average square end-to-end distance < r(2) > of polyethylene chains calculable. Simulation of chains with the same molar mass but with different branch contents showed a reduction in the average end-to-end distance with increased branching. The use of real molar mass distribution data was also added to the model features.

Place, publisher, year, edition, pages
2015. Vol. 72, p. 177-184
Keywords [en]
Polyethylene, Branches, Segregation, Tie chains, Trapped entanglements, Radius of gyration, Simulation
National Category
Polymer Technologies
Identifiers
URN: urn:nbn:se:kth:diva-173260DOI: 10.1016/j.polymer.2015.07.008ISI: 000359649300021Scopus ID: 2-s2.0-84937797000OAI: oai:DiVA.org:kth-173260DiVA, id: diva2:853240
Note

QC 20150911

Available from: 2015-09-11 Created: 2015-09-09 Last updated: 2018-09-11Bibliographically approved
In thesis
1. Molecular Structure, Interfacial Chain Topology, Electronic Structure and Fracture Toughness of Polyethylene: A Multiscale Computational Study
Open this publication in new window or tab >>Molecular Structure, Interfacial Chain Topology, Electronic Structure and Fracture Toughness of Polyethylene: A Multiscale Computational Study
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The structure of semicrystalline polyethylene (PE) strongly affects its properties. Two important structural features, namely the concentrations of tie chains and entanglements cannot be directly assessed using experimental techniques. These parameters have a major impact on mechanical properties of the material, especially on its fracture toughness. The present study has therefore focused on developing methods based on computer simulation in order to determine the concentrations of tie chains and entanglements as a function of molecular structure in unimodal and bimodal PE systems.

An off-lattice Monte Carlo (MC) method was developed to simulate the semicrystalline PE. The code was able to input molar mass distribution, short-chain branch distribution, and crystallinity data and model the crystalline-amorphous lamellar structure with the focus on determining the concentrations of tie chains and entanglements. Introduction of the short-chain branches significantly increased the tie chain and entanglement concentrations. The method was then used to simulate a typical semicrystalline structure, and this structure as well as other simulated variations of the PE structure were equilibrated using molecular dynamics (MD) simulations. A linear-scaling DFT (density functional theory) method was then used in order to determine the electronic structure of the materials. Bandgap of the semicrystalline model was found to be smaller than both pure crystalline or amorphous systems. This could indicate the preference for electrons to reside in the interfacial regions rather than in crystalline or bulk amorphous regions. Low effective activation energies obtained indicated a high mobility of holes, excess electrons, and charge carriers at room temperature.

Coarse-grained (CG) potentials were derived using the iterative Boltzmann inversion (IBI) method to describe linear and branched PE. The potentials were then used in CG-MD simulations to crystallize and draw blends of low and high molar mass PE. The purpose was to determine the concentrations of tie chains and entanglements as well as their effect on the fracture toughness. Addition of a linear high molar mass component (only 25 % by weight) significantly increased the concentration of entanglements and thus the fracture toughness of the material. The introduction of a butyl-branched high molar mass fraction had an even stronger effect on the concentration of entanglements and, in particular, on the tie chain concentration. These latter systems exhibited the highest fracture toughness values of all systems studied.

Abstract [sv]

Strukturen hos delkristallin polyeten (PE) har stor inverkan på materialets egenskaper. Två viktiga strukturella parametrar, koncentrationerna av sammanbindningsmolekyler och låsta kedjeihoptrasslingar, kan inte direkt bestämmas med tillgängliga experimentella metoder. Dessa parametrar har stor inverkan på materialets mekaniska egenskaper, i synnerhet på dess brottseghet. Avhandlingen har därför haft ett fokus på att utveckla metoder baserade på datasimulering för att kunna bestämma koncentrationerna av sammanbindningsmolekyler och låsta kedjeihoptrasslingar som funktion av molekylär struktur i enmodala och bimodala PE system.

En icke-gitterbaserad Monte Carlo (MC) metod utvecklades för att simulera strukturen hos delkristallin PE. Den numeriska koden utgick från inmatade parametervärden för fördelningar av molmassa och förgreningsgrad, samt kristallinitetsgrad för att modellera den kristallina-amorfa lamellstrukturen med ett fokus på att bestämma koncentrationerna av sammanbindningsmolekyler och låsta kedjeihoptrasslingar. Införandet av kortkedjeförgrenat material gav en signifikant ökning av koncentrationerna av sammanbindningsmolekyler och låsta kedjeihoptrasslingar. Metoden nyttjades också för att bygga delkristallina multilamellstrukturer, som innan ytterligare simulering genomfördas bringades i jämvikt med hjälp av en molekyldynamik-(MD)-metod. En linjär DFT - (density functional theory) - metod användas för att kartlägga materialets elektriska egenskaper. Bandgapen hos den delkristallina modellen befanns vara mindre än för rena kristallina och rena amorfa modellsystem. Denna observation indikerar att elektroner har en tendens att befinna sig i gränsskikten mellan amorf och kristallin fas. De låga erhållna aktiveringsenergierna för mobilitet hos hål, elektroner och andra laddningsbärare vid rumstemperatur var anmärkningsvärd.

Coarse-grained (ungefär grovskaliga (CG)) potentialfunktioner togs fram med hjälp av en iterativ-Boltzmann-inversions-(IBI)-metod för att beskriva linjär och grenad PE. Metoden användas för CG-MD-simuleringar för att kristallisera blandningar av nämnda bimodala (lågmolekylär komponent samt högmolekylär komponent) polymersystem.  Studiens syfte var att bestämma koncentrationerna av sammanbindningsmolekyler och låsta kedjeihoptrasslingar samt deras effekt på krypkomplians (vid flytning) och brottseghet. Addition av en linjär högmolekylär komponent (även vid lägre andelar, mindre än 25 vikt%) ökade avsevärt koncentrationen av låsta kedjeihoptrasslingar och därmed materialets brottseghet. Introduktion av butylgrenat, högmolekylärt material hade en ännu starkare effekt på koncentrationen av låsta kedjeihoptrasslingar och i synnerhet på sammanbindningsmolekylkoncentrationen. Dessa senare system uppvisade de allra högsta brottseghetsvärdena av alla studerade system.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2018
Series
TRITA-CBH-FOU ; 2018:40
National Category
Textile, Rubber and Polymeric Materials Polymer Technologies Theoretical Chemistry
Identifiers
urn:nbn:se:kth:diva-234818 (URN)978-91-7729-925-7 (ISBN)
Public defence
2018-10-05, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20180911

Available from: 2018-09-11 Created: 2018-09-11 Last updated: 2018-09-11Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Moyassari, Ali

Search in DiVA

By author/editor
Moyassari, AliMostafavi, HakhamaneshHedenqvist, Mikael S.Gedde, Ulf W.Nilsson, Fritjof
By organisation
Fibre and Polymer Technology
In the same journal
Polymer
Polymer Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf