Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Body height and arterial pressure in seated and supine young males during +2 G centrifugation
KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology. KTH, School of Technology and Health (STH), Centres, Swedish Aerospace Physiology Centre, SAPC.
KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology. KTH, School of Technology and Health (STH), Centres, Swedish Aerospace Physiology Centre, SAPC.
Show others and affiliations
2015 (English)In: American Journal of Physiology. Regulatory Integrative and Comparative Physiology, ISSN 0363-6119, E-ISSN 1522-1490, Vol. 309, no 9Article in journal (Refereed) Published
Abstract [en]

It is known that arterial pressure correlates positively with body height in males and it has been suggested that this is due to the increasing vertical hydrostatic gradient from the heart to the carotid baroreceptors. Therefore we tested the hypothesis that a higher gravitoinertial stress induced by the use of a human centrifuge would increase mean arterial pressure (MAP) more in tall than in short males in the seated position. In short (162-171cm, n=8) and tall (194-203cm, n=10) healthy males (18-41y), brachial arterial pressure, heart rate (HR) and cardiac output were measured during +2G centrifugation, while they were seated upright with the legs kept horizontal (+2Gz). In a separate experiment, the same measurements were done with the subjects supine (+2Gx). During +2Gz MAP increased in the short (22±2 mmHg, p<0.0001) and tall (23±2 mmHg, p<0.0001) males, with no significant difference between the groups. HR increased more (p<0.05) in the tall than in the short group (14±2 versus 7±2 bpm). Stroke volume (SV) decreased in the short group (26±4 mL, p=0.001) and more so in the tall group (39±5 mL, p<0.0001; short vs tall p=0.047). During +2GX, systolic arterial pressure increased (p<0.001) and SV (p=0.012) decreased in the tall group only. In conclusion, during +2Gz MAP increased in both short and tall males with no difference between the groups. However, in the tall group HR increased more during +2Gz which could be caused by a larger hydrostatic pressure gradient from heart to head leading to greater inhibition of the carotid baroreceptors.

Place, publisher, year, edition, pages
American Physiological Society , 2015. Vol. 309, no 9
National Category
Physiology
Identifiers
URN: urn:nbn:se:kth:diva-173615DOI: 10.1152/ajpregu.00524.2014ISI: 000364320000018Scopus ID: 2-s2.0-84946052808OAI: oai:DiVA.org:kth-173615DiVA: diva2:853944
Note

QC 20151130

Available from: 2015-09-15 Created: 2015-09-15 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Eiken, OlaKölegård, Roger
By organisation
Environmental PhysiologySwedish Aerospace Physiology Centre, SAPC
In the same journal
American Journal of Physiology. Regulatory Integrative and Comparative Physiology
Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 92 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf