Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Strategies for increasing evaporative cooling during simulated desert patrol mission.
KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology.
KTH, School of Technology and Health (STH), Basic Science and Biomedicine, Environmental Physiology.
2016 (English)In: Ergonomics, ISSN 0014-0139, E-ISSN 1366-5847, Vol. 59, no 2Article in journal (Refereed) Published
Abstract [en]

The study evaluated the efficiency of two heat dissipation strategies under simulated desert patrol missions. Ten men participated in four trials, during which they walked on a treadmill (45°C, 20% relative humidity), carrying a load of 35 kg; two 50-min walks were separated by a 20-min rest. Cooling strategies, provided by an ambient air-ventilated vest (active cooling condition, AC), or water spraying of the skin during the rest (passive cooling condition, PC), in addition to reduced clothing and open zippers, were compared to conditions with full protective (FP) clothing and naked condition (NC). Skin temperature was higher during NC (37.9 ± 0.4°C; p < 0.001), and rectal temperature and heart rate were higher during FP (38.6 ± 0.4°C, p < 0.001 and 145 ± 12, p < 0.001, respectively), compared to other conditions. Four subjects terminated the trial prematurely due to signs of heat exhaustion in FP. Both cooling strategies substantially improved evaporative cooling.

Place, publisher, year, edition, pages
Taylor & Francis, 2016. Vol. 59, no 2
National Category
Physiology
Identifiers
URN: urn:nbn:se:kth:diva-173616DOI: 10.1080/00140139.2015.1061142ISI: 000372041400011Scopus ID: 2-s2.0-84959932040OAI: oai:DiVA.org:kth-173616DiVA: diva2:853955
Note

QC 20160411

Available from: 2015-09-15 Created: 2015-09-15 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Grönkvist, MikaelEiken, Ola
By organisation
Environmental Physiology
In the same journal
Ergonomics
Physiology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf