Change search
ReferencesLink to record
Permanent link

Direct link
Saturation of the turbulent dynamo
KTH, Centres, Nordic Institute for Theoretical Physics NORDITA. Universit├Ąt Heidelberg, Germany.
Show others and affiliations
2015 (English)In: Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, ISSN 1539-3755, E-ISSN 1550-2376, Vol. 92, no 2, 023010Article in journal (Refereed) Published
Abstract [en]

The origin of strong magnetic fields in the Universe can be explained by amplifying weak seed fields via turbulent motions on small spatial scales and subsequently transporting the magnetic energy to larger scales. This process is known as the turbulent dynamo and depends on the properties of turbulence, i.e., on the hydrodynamical Reynolds number and the compressibility of the gas, and on the magnetic diffusivity. While we know the growth rate of the magnetic energy in the linear regime, the saturation level, i.e., the ratio of magnetic energy to turbulent kinetic energy that can be reached, is not known from analytical calculations. In this paper we present a scale-dependent saturation model based on an effective turbulent resistivity which is determined by the turnover time scale of turbulent eddies and the magnetic energy density. The magnetic resistivity increases compared to the Spitzer value and the effective scale on which the magnetic energy spectrum is at its maximum moves to larger spatial scales. This process ends when the peak reaches a characteristic wave number k(star) which is determined by the critical magnetic Reynolds number. The saturation level of the dynamo also depends on the type of turbulence and differs for the limits of large and small magnetic Prandtl numbers Pm. With our model we find saturation levels between 43.8% and 1.3% for Pm >> 1 and between 2.43% and 0.135% for Pm << 1, where the higher values refer to incompressible turbulence and the lower ones to highly compressible turbulence.

Place, publisher, year, edition, pages
2015. Vol. 92, no 2, 023010
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-173144DOI: 10.1103/PhysRevE.92.023010ISI: 000359054400007ScopusID: 2-s2.0-84939532225OAI: diva2:854884
EU, FP7, Seventh Framework Programme, 339177

QC 20150918

Available from: 2015-09-18 Created: 2015-09-07 Last updated: 2015-09-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Schober, Jennifer
By organisation
Nordic Institute for Theoretical Physics NORDITA
In the same journal
Physical Review E. Statistical, Nonlinear, and Soft Matter Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 9 hits
ReferencesLink to record
Permanent link

Direct link