Change search
ReferencesLink to record
Permanent link

Direct link
Best bang for your buck: GPU nodes for GROMACS biomolecular simulations
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical & Computational Biophysics.ORCID iD: 0000-0003-0603-5514
Show others and affiliations
2015 (English)In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 36, no 26, 1990-2008 p.Article in journal (Refereed) Published
Abstract [en]

The molecular dynamics simulation package GROMACS runs efficiently on a wide variety of hardware from commodity workstations to high performance computing clusters. Hardware features are well-exploited with a combination of single instruction multiple data, multithreading, and message passing interface (MPI)-based single program multiple data/multiple program multiple data parallelism while graphics processing units (GPUs) can be used as accelerators to compute interactions off-loaded from the CPU. Here, we evaluate which hardware produces trajectories with GROMACS 4.6 or 5.0 in the most economical way. We have assembled and benchmarked compute nodes with various CPU/GPU combinations to identify optimal compositions in terms of raw trajectory production rate, performance-to-price ratio, energy efficiency, and several other criteria. Although hardware prices are naturally subject to trends and fluctuations, general tendencies are clearly visible. Adding any type of GPU significantly boosts a node's simulation performance. For inexpensive consumer-class GPUs this improvement equally reflects in the performance-to-price ratio. Although memory issues in consumer-class GPUs could pass unnoticed as these cards do not support error checking and correction memory, unreliable GPUs can be sorted out with memory checking tools. Apart from the obvious determinants for cost-efficiency like hardware expenses and raw performance, the energy consumption of a node is a major cost factor. Over the typical hardware lifetime until replacement of a few years, the costs for electrical power and cooling can become larger than the costs of the hardware itself. Taking that into account, nodes with a well-balanced ratio of CPU and consumer-class GPU resources produce the maximum amount of GROMACS trajectory over their lifetime.

Place, publisher, year, edition, pages
2015. Vol. 36, no 26, 1990-2008 p.
Keyword [en]
molecular dynamics, GPU, parallel computing, energy efficiency, benchmark, MD, hybrid parallelization
National Category
Chemical Sciences
URN: urn:nbn:se:kth:diva-173956DOI: 10.1002/jcc.24030ISI: 000360807700007PubMedID: 26238484ScopusID: 2-s2.0-84941180719OAI: diva2:859281

QC 20151006

Available from: 2015-10-06 Created: 2015-09-24 Last updated: 2015-10-28Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
Pall, Szilard
By organisation
Theoretical & Computational Biophysics
In the same journal
Journal of Computational Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 48 hits
ReferencesLink to record
Permanent link

Direct link