Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of Nanostructured Silicon - Germanium Thermoelectric Materials by Mechanical Alloying
KTH, School of Information and Communication Technology (ICT).
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Silicon-germanium (SiGe) thermoelectric material is especially suited in power generation operating above 700 °C to 1000 °C to convert heat into electricity. Traditional bulk SiGe alloy thermoelectric materials has the value of dimensionless thermoelectric figure of merit (ZT) at maximum about 0.93 at 900 °C. It corresponds to 8% highest device efficiency to convert heat into electricity for commercial SiGe thermoelectric devices. Recently, many efforts have been made to increase the ZT value of SiGe thermoelectric materials. Among them, nanostructuring of SiGe alloy is an effective mechanism to enhance the ZT value of the thermoelectric material. In this approach, the ZT value increases due to the reduction of thermal conductivity caused by enhanced phonon scattering off the increased density of nanograin boundaries. There are different approaches to make nanostructured SiGe alloy bulk thermoelectric materials. Mechanical alloying of elemental Si and Ge powder is one of them. In this thesis work, different compositions of elemental Si and Ge micro powders have been mechanically alloyed using ball milling technique to produce SiGe alloy nanopowder and then were compacted and sintered by spark plasma sintering (SPS) method. Different characterization techniques have been used to see the effect of compositions, milling parameters and sintering conditions on the properties of the synthesized nanopowders and sintered compact samples.

Place, publisher, year, edition, pages
2015.
Series
TRITA-ICT-EX, 2015:44
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-175143OAI: oai:DiVA.org:kth-175143DiVA: diva2:859953
Examiners
Available from: 2015-10-09 Created: 2015-10-09 Last updated: 2017-06-13Bibliographically approved

Open Access in DiVA

fulltext(6428 kB)16 downloads
File information
File name FULLTEXT01.pdfFile size 6428 kBChecksum SHA-512
a22c67df575e5e85ea294e37d5b0d13b7e6410d12835d1ce01b2f149399dbb0a2da1716e9667818584b1aed5b95e5ac7ffd27eaa7db25fff31037700f3f3749e
Type fulltextMimetype application/pdf

By organisation
School of Information and Communication Technology (ICT)
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 16 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 97 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf