Change search
ReferencesLink to record
Permanent link

Direct link
CO2 mitigation accounting for Thermal Energy Storage (TES) case studies
Show others and affiliations
2015 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 155, 365-377 p.Article in journal (Refereed) Published
Abstract [en]

According to the IPCC, societies can respond to climate changes by adapting to its impacts and by mitigation, that is, by reducing GHG emissions. No single technology can provide all of the mitigation potential in any sector, but many technologies have been acknowledged in being able to contribute to such potential. Among the technologies that can contribute in such potential, Thermal Energy Storage (TES) is not included explicitly, but implicitly as part of technologies such as energy supply, buildings, and industry. To enable a more detailed assessment of the CO2 mitigation potential of TES across many sectors, the group Annex 25 "Surplus heat management using advanced TES for CO2 mitigation" of the Energy Conservation through Energy Storage Implementing Agreement (ECES IA) of the International Energy Agency (AEI) present in this article the CO2 mitigation potential of different case studies with integrated TES. This potential is shown using operational and embodied CO2 parameters. Results are difficult to compare since TES is always designed in relation to its application, and each technology impacts the energy system as a whole to different extents. The applications analyzed for operational CO2 are refrigeration, solar power plants, mobile heat storage in industrial waste heat recovery, passive systems in buildings, ATES for a supermarket, greenhouse applications, and dishwasher with zeolite in Germany. The paper shows that the reason for mitigation is different in each application, from energy savings to larger solar share or lowering energy consumption from appliances. The mitigation potential dues to integrated TES is quantified in kg/MW h energy produced or heat delivered. Embodied CO2 in two TES case studies is presented, buildings and solar power plants.

Place, publisher, year, edition, pages
Pergamon Press, 2015. Vol. 155, 365-377 p.
Keyword [en]
CO2 mitigation potential, Thermal Energy Storage (TES), Operational CO2, Embodied CO2
National Category
Energy Engineering Chemical Engineering
URN: urn:nbn:se:kth:diva-174207DOI: 10.1016/j.apenergy.2015.05.121ISI: 000360950900031ScopusID: 2-s2.0-84934923804OAI: diva2:860022

QC 20151009

Available from: 2015-10-09 Created: 2015-10-02 Last updated: 2015-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Martin, Viktoria
By organisation
Applied Thermodynamics and Refrigeration
In the same journal
Applied Energy
Energy EngineeringChemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 40 hits
ReferencesLink to record
Permanent link

Direct link