Change search
ReferencesLink to record
Permanent link

Direct link
Effect of pressure oscillations on in-cylinder heat transfer - through large eddy simulation
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Internal Combustion Engines.
2015 (English)In: International Journal of Engine Research, ISSN 1468-0874, E-ISSN 2041-3149, Vol. 16, no 6, 705-715 p.Article in journal (Refereed) Published
Abstract [en]

As fuel consumption is a key issue for next-generation internal combustion engines, the heat release rate is increased and the duration shortened towards partially premixed combustion and in extreme cases towards homogeneous charge compression ignition to increase thermal efficiency. However, a steep rise in the heat release rate may trigger pressure oscillations in the combustion chamber, which have shown to increase the heat transfer, lowering efficiency and increasing fuel consumption. The aim of this research is to find the physical mechanisms that cause the increased in-cylinder heat transfer in the presence of pressure oscillations. According to the author's knowledge, the physical mechanisms responsible for the increased heat transfer have yet not been well understood for this application. Several of the hypotheses for this work are therefore based on the research performed for pulsating turbulent pipe flow. A numerical study has been performed using the large eddy simulation approach, where the pressure oscillations in the combustion chamber have been triggered by an artificially imposed heat source. The results show an increase in heat transfer in relation to pressure amplitude, in accordance with previous experimental studies. The mechanism found is a rapid transport of high-temperature fluid from the heat source towards the wall due to large-scale velocity fluctuations emerged from the pressure oscillations resulting in increased heat transfer.

Place, publisher, year, edition, pages
Royal Inst Technol, Div Internal Combust Engines, Dept Machine Design, S-10044 Stockholm, Sweden., 2015. Vol. 16, no 6, 705-715 p.
Keyword [en]
Internal combustion engines, pressure oscillations, heat transfer, computational fluid dynamics, large eddy simulation
National Category
Transport Systems and Logistics Applied Mechanics
URN: urn:nbn:se:kth:diva-174232DOI: 10.1177/1468087414544899ISI: 000360757900001ScopusID: 2-s2.0-84940849608OAI: diva2:861480

QC 20151016

Available from: 2015-10-16 Created: 2015-10-02 Last updated: 2015-10-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Winkler, Niklas
By organisation
Internal Combustion Engines
In the same journal
International Journal of Engine Research
Transport Systems and LogisticsApplied Mechanics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 67 hits
ReferencesLink to record
Permanent link

Direct link