Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Using the RetSim simulator for fraud detection research
KTH, School of Architecture and the Built Environment (ABE), Transport Science. (Safety Research)ORCID iD: 0000-0001-5427-7548
2015 (English)In: International Journal of Simulation and Process Modelling, ISSN 1740-2123, E-ISSN 1740-2131, Vol. 10, no 2Article in journal (Refereed) Published
Abstract [en]

Managing fraud is important for business, retail and financial alike. One method to manage fraud is by detection, where transactions, etc. are monitored and suspicious behaviour is flagged for further investigation. There is currently a lack of public research in this area. The main reason is the sensitive nature of the data. Publishing real financial transaction data would seriously compromise the privacy of both customers, and companies alike. We propose to address this problem by building RetSim, a multi-agent-based simulation (MABS) calibrated with real transaction data from one of the largest shoe retailers in Scandinavia. RetSim allows us to generate synthetic transactional data that can be publicly shared and studied without leaking business sensitive information, and still preserve the important characteristics of the data. We then use RetSim to model two common retail fraud scenarios to ascertain exactly how effective the simplest form of statistical threshold detection could be. The preliminary results of our tested fraud detection method show that the threshold detection is effective enough at keeping fraud losses at a set level, that there is little economic room for improved techniques.

Place, publisher, year, edition, pages
2015. Vol. 10, no 2
Keyword [en]
privacy, anonymisation, multi-agent simulation, MABS, ABS, retail stores, fraud detection, synthetic data, RetSim simulator, multi-agent systems, agent-based systems, fraud management, shoe retailers, agent-based modelling, synthetic transactional data, public sharing, data sharing, retail fraud, fraud losses
National Category
Computer and Information Science
Identifiers
URN: urn:nbn:se:kth:diva-176311DOI: 10.1504/IJSPM.2015.070465Scopus ID: 2-s2.0-84949668640ISBN: 9788897999225 (print)OAI: oai:DiVA.org:kth-176311DiVA: diva2:866583
Note

QC 20151103

Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2017-12-01Bibliographically approved
In thesis
1. Aspects of Modeling Fraud Prevention of Online Financial Services
Open this publication in new window or tab >>Aspects of Modeling Fraud Prevention of Online Financial Services
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Banking and online financial services are part of our critical infrastructure. As such, they comprise an Achilles heel in society and need to be protected accordingly. The last ten years have seen a steady shift from traditional show-off hacking towards cybercrime with great economic consequences for society. The different threats against online services are getting worse, and risk management with respect to denial-of-service attacks, phishing, and banking Trojans is now part of the agenda of most financial institutions. This trend is overseen by responsible authorities who step up their minimum requirements for risk management of financial services and, among other things, require regular risk assessment of current and emerging threats.For the financial institution, this situation creates a need to understand all parts of the incident response process of the online services, including the technology, sub-processes, and the resources working with online fraud prevention. The effectiveness of each countermeasure has traditionally been measured for one technology at a time, for example, leaving the fraud prevention manager with separate values for the effectiveness of authentication, intrusion detection, and fraud prevention. In this thesis, we address two problems with this situation. Firstly, there is a need for a tool which is able to model current countermeasures in light of emerging threats. Secondly, the development process of fraud detection is hampered by the lack of accessible data.In the main part of this thesis, we highlight the importance of looking at the “big risk picture” of the incident response process, and not just focusing on one technology at a time. In the first article, we present a tool which makes it possible to measure the effectiveness of the incident response process. We call this an incident response tree (IRT). In the second article, we present additional scenarios relevant for risk management of online financial services using IRTs. Furthermore, we introduce a complementary model which is inspired by existing models used for measuring credit risks. This enables us to compare different online services, using two measures, which we call Expected Fraud and Conditional Fraud Value at Risk. Finally, in the third article, we create a simulation tool which enables us to use scenario-specific results together with models like return of security investment, to support decisions about future security investments.In the second part of the thesis, we develop a method for producing realistic-looking data for testing fraud detection. In the fourth article, we introduce multi-agent based simulations together with social network analysis to create data which can be used to fine-tune fraud prevention, and in the fifth article, we continue this effort by adding a platform for testing fraud detection.

Abstract [sv]

Finansiella nättjänster är en del av vår kritiska infrastruktur. På så vis utgör de en akilleshäl i samhället och måste skyddas på erforderligt sätt. Under de senaste tio åren har det skett en förskjutning från traditionella dataintrång för att visa upp att man kan till en it-brottslighet med stora ekonomiska konsekvenser för samhället. De olika hoten mot nättjänster har blivit värre och riskhantering med avseende på överbelastningsattacker, nätfiske och banktrojaner är nu en del av dagordningen för finansiella institutioner. Denna trend övervakas av ansvariga myndigheter som efterhand ökar sina minimikrav för riskhantering och bland annat kräver regelbunden riskbedömning av befintliga och nya hot.För den finansiella institutionen skapar denna situation ett behov av att förstå alla delar av incidenthanteringsprocessen, inklusive dess teknik, delprocesser och de resurser som kan arbeta med bedrägeribekämpning. Traditionellt har varje motåtgärds effektivitet mätts, om möjligt, för en teknik i taget, vilket leder till att ansvariga för bedrägeribekämpning får separata värden för autentisering, intrångsdetektering och bedrägeridetektering.I denna avhandling har vi fokuserat på två problem med denna situation. För det första finns det ett behov av ett verktyg som kan modellera effektiviteten för institutionens samlade motåtgärder mot bakgrund av befintliga och nya hot. För det andra saknas det tillgång till data för forskning rörande bedrägeridetektering, vilket hämmar utvecklingen inom området.I huvuddelen av avhandlingen ligger tonvikten på att studera ”hela” incidenthanteringsprocessen istället för att fokusera på en teknik i taget. I den första artikeln presenterar vi ett verktyg som gör det möjligt att mäta effektiviteten i incidenthanteringsprocessen. Vi kallar detta verktyg för ”incident response tree” (IRT) eller ”incidenthanteringsträd”. I den andra artikeln presenterar vi ett flertal scenarier som är relevanta för riskhantering av finansiella nättjänster med hjälp av IRT. Vi utvecklar också en kompletterande modell som är inspirerad av befintliga modeller för att mäta kreditrisk. Med hjälp av scenarioberoende mått för ”förväntat bedrägeri” och ”value at risk”, har vi möjlighet att jämföra risker mellan olika nättjänster. Slutligen, i den tredje artikeln, skapar vi ett agentbaserat simuleringsverktyg som gör det möjligt att använda scenariospecifika resultat tillsammans med modeller som ”avkastning på säkerhetsinvesteringar” för att stödja beslut om framtida investeringar i motåtgärder.I den andra delen av avhandlingen utvecklar vi en metod för att generera syntetiskt data för test av bedrägeridetektering. I den fjärde artikeln presenterar vi ett agentbaserat simuleringsverktyg som med hjälp av bland annat ”sociala nätverksanalyser” kan användas för att generera syntetiskt data med realistiskt utseende. I den femte artikeln fortsätter vi detta arbete genom att lägga till en plattform för testning av bedrägeridetektering.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xii, 30 p.
Series
TRITA-TSC-PHD, 15:007
Keyword
Online banking, fraud, incident response, metrics, incident response tree (IRT), value at risk (VaR), simulation
National Category
Other Civil Engineering
Research subject
Transport Science
Identifiers
urn:nbn:se:kth:diva-176298 (URN)978-91-87353-76-5 (ISBN)
Public defence
2015-11-24, F3, Lindstedtsvägen 26, KTH, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20151103

Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2015-11-03Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Gorton, Dan

Search in DiVA

By author/editor
Gorton, Dan
By organisation
Transport Science
In the same journal
International Journal of Simulation and Process Modelling
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 47 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf