Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Design and evaluation of railway corridors based on spatial ecological and geological criteria
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (Environmental Management and Assessment)
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.ORCID iD: 0000-0002-3614-671X
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering. (Environmental Management and Assessment)ORCID iD: 0000-0002-1640-8946
KTH, School of Architecture and the Built Environment (ABE), Sustainable development, Environmental science and Engineering, Land and Water Resources Engineering.
Show others and affiliations
2016 (English)In: Transportation Research Part D: Transport and Environment, ISSN 1361-9209, E-ISSN 1879-2340, Vol. 46, 207-228 p.Article in journal (Refereed) Published
Abstract [en]

Transport infrastructure is closely linked to several sustainability issues of main policy relevance, and significant impacts on biodiversity as well as resource use and construction costs relate to the corridor design and location in the landscape. The aim of this study was to develop methods for railway corridor planning, in which corridor design and location would be based on important ecological and geological sustainability criteria. The method, an MCA framework including both spatial and non-spatial MCA, was demonstrated on a railway planning proposition in an urbanising area north of Stockholm, Sweden. Alternative spatial alignments for 6 railway corridors were derived based on criteria representing biodiversity, resource efficiency and costs, developed from ecological and geological knowledge, data and models. The method identified a study area specific positive synergy between ecological and geological sustainability criteria. The evaluation part of the methodology could furthermore identify uncertainties in the input data and assumptions and conflicts between ecological criteria. In order to arrive at a well-informed decision support system, the criteria as well as the decision rules employed could be further elaborated. Other relevant sustainability issues would also need to be integrated, such as cultural landscapes, recreation, and other ecosystem services. Still, arriving at a corridor design informed by the ecological and geological conditions in the planned area, as demonstrated by this study, could improve the sustainability performance of transport infrastructure planning.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 46, 207-228 p.
Keyword [en]
MCA, Planning, Decision support, Biodiversity, EIA, SEA
National Category
Environmental Analysis and Construction Information Technology
Research subject
Land and Water Resources Engineering
Identifiers
URN: urn:nbn:se:kth:diva-176397DOI: 10.1016/j.trd.2016.03.012ISI: 000377829900016Scopus ID: 2-s2.0-84962791640OAI: oai:DiVA.org:kth-176397DiVA: diva2:866665
Projects
GESP
Funder
Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, 242-2009-1285StandUp
Note

QC 20160718

Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2017-07-23Bibliographically approved
In thesis
1. Road Ecology for Environmental Assessment
Open this publication in new window or tab >>Road Ecology for Environmental Assessment
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transport infrastructure is closely linked to several politically relevant sustainability issues, and since 1985 a formalized environmental assessment process is linked to planning and construction of new roads and railways in the EU (EU directives 85/337/EEC and 2001/42). The aim of the environmental assessment process is to think in advance; to identify, predict and evaluate significant environmental changes resulting from a proposed activity, in order to adjust the proposed activity accordingly and to avoid unnecessary and unexpected consequences. Biodiversity is a component of sustainable development that is in many ways affected by road and railway construction, but which has been challenging to fully account for within the environmental assessment process. This thesis presents four studies on the role of biodiversity in environmental assessment of road and railway plans and projects. Paper I presents the state of the art of road and railway impacts on ecological patterns and processes sustaining biodiversity, and reviews the treatment of biodiversity in a selection of environmental assessment reports from Sweden and the UK. Paper II presents a quantitative assessment of the impact of the Swedish road network on birds and mammals, and how fragmentation and road disturbance might affect a selection of ecological profiles. Paper III demonstrates how scientific models, data and knowledge can be mobilized for the design and evaluation of railway corridors, and Paper IV analyses how habitat connectivity, as a prerequisite of genetic exchange, relates to landscape composition and size and number of fauna passages. The results from Paper I show that road and railway impacts on biodiversity need to be addressed at every level of planning; from corridor alignment in the landscape to utilization and maintenance. The review of environmental assessment reports shows that the treatment of biodiversity in environmental assessment has improved over the years, but that problems with habitat fragmentation, connectivity and the spatial delimitation of the impact assessment study area remain. The results from Paper II identify natural grasslands and southern broadleaved forest, prioritized habitat types important for biodiversity, to most likely be highly affected by road impacts, and suggest road disturbance to have a high impact on overall habitat availability. The results from Paper III demonstrate how the landscape specific distribution of ecological and geological resources can be accounted for in railway corridor design, and potentially lead to more resource efficient outcomes with less impact on ecological processes. The results from Paper IV indicate that the several small fauna passages would increase connectivity more across a barrier than the construction of a single large. Effective barrier mitigation will also depend on the selection of focal species and the understanding of how the focal species perceive the landscape in terms of resistance to movement. This thesis demonstrates how quantitative assessment can benefit biodiversity impact analysis and address issues such as habitat connectivity and fragmentation, which have been difficult to account for in environmental assessment. It is recommended that biodiversity impact analysis moves towards an increasing use of quantitative methods and tools for prediction, evaluation and sensitivity analysis. Future challenges include verification and calibration of relevant spatial ecological models, and further integration of road ecology knowledge into road and railway planning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. xii, 51 p.
Series
TRITA-LWR. PHD, ISSN 1650-8602 ; 2015:06
Keyword
Roads, Railways, Biodiversity, Environmental Assessment, GIS, Decision Support
National Category
Environmental Sciences
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-176399 (URN)978-91-7595-746-3 (ISBN)
Public defence
2015-11-25, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
GESP
Funder
Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, 242-2009-1285
Note

QC 20151103

Available from: 2015-11-03 Created: 2015-11-03 Last updated: 2015-11-03Bibliographically approved
2. Geo-environmental considerations in transport infrastructure planning
Open this publication in new window or tab >>Geo-environmental considerations in transport infrastructure planning
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transport infrastructure constitutes one of the key factors to a country’s economic growth. Investment in new transport infrastructure might cause potential environmental impacts, and if a project has several alternative corridors open for suggestion then each alternative corridor will have a different impact on the environment. The European Commission has stated that the natural resources are important to the quality of life. Therefore, the efficient use of resources will be a key towards meeting future climate change and reduction in greenhouse gas (GHG) emissions. This implies that in an evergrowing global society the resource efficiency as well as the choice of transport infrastructure corridor becomes even more important to consider. The aim of this research project was to contribute to early transport infrastructure planning by the development of methods for and implementation of easy understandable geological criteria and models for decision support. Moreover, the intention was to assess how geological information can be developed and extracted from existing spatial data and coupled with other areas of interest, such as ecology and life cycle assessment. It has previously been established that geological information plays an important role in transport infrastructure planning, as the geological characteristics of the proposed area as well as the possibilities of material use influences the project. Therefore, in order to couple geological information for early transport infrastructure planning, four studies (Paper I-IV) were undertaken where methods were developed and tested for the inclusion of geological information. The first study (Paper I) demonstate how optional road corridors could be evaluated using geological information of soil thickness, soil type and rock outcrops, bedrock quality and slope in combination with ecological information. The second study (Paper II) shows how geological information of soil thickness and stratigraphy can be combined with life cycle assessments (LCA) to assess the corresponding greenhouse gas emission and energy use for the proposed road corridors. The difficulty of using expert knowledge for susceptibility assessment of natural hazards, i.e. flooding, landslide and debris flow, for early transport infrastructure planning was presented in the third study (Paper III). In this study the expert knowledge was used in a multi-criteria analysis where the analytic hierarchy process (AHP) was chosen as a decision rule. This decision rule was compared to the decision rule weighted linear combination (WLC) using two different schemes of weighting. In all the mentioned studies the importance of soil thickness information was highlighted. Therefore, the fourth and final study (Paper IV) presented a new methodology for modelling the soil thickness in areas where data is sparse. A simplified regolith model (SRM) was developed in order to estimate the regolith thickness, i.e. soil thickness, for previously glaciate terrain with a high frequency of rock outcrops. SRM was based on a digital elevation model (DEM) and an optimized search algorithm. The methods developed in order to couple geological information with other areas of interest is a tentative step towards an earlier geo-environmental planning process. However, the methods need to be tested in other areas with different geological conditions. The combination of geological information in GIS with MCA enabled the integration of knowledge for decision making; it also allowed influencing the importance between various aspects of geological information as well as the importance between geological information and other fields of interest, such as ecology, through the selected weighting schemes. The results showed that synergies exist between ecology and geology, where important geological considerations could also have positive effects on ecological consideration. Soil thickness was very important for GHG emission and energy whereas stratigraphical knowledge had a minor influence. When using expert knowledge the consistency in the expert judgements also needs to be considered. It was shown that experts tended to be inconsistent in their judgements, and that some consistency could be reached if the judgements were aggregated instead of used separately. The results also showed that the developed SRM had relatively accurate results for data sparse areas, and that this model could be used in several projects where the knowledge of soil thickness is important but lacking. It was concluded that geological information should be considered. By using GIS and MCA it is possible to evaluate different aspects of geological information in order to improve decision making.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 44 p.
Series
TRITA-LWR. PHD, ISSN 1650-8602 ; 2016:07
Series
TRITA-LWR PHD, ISSN 1650-8602 ; 2016:07
Keyword
Roads, Railways, Geology, GIS, Decision support, Modelling
National Category
Earth and Related Environmental Sciences
Research subject
Land and Water Resources Engineering
Identifiers
urn:nbn:se:kth:diva-192918 (URN)978-91-7729-124-4 (ISBN)
Public defence
2016-10-14, Kollegiesalen, Brinellvägen 8, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
Environmental assessment of road geology and ecology in a system perspective
Funder
Swedish Research Council Formas, 242-2009-1285, 2014 - 754
Available from: 2016-09-23 Created: 2016-09-22 Last updated: 2016-09-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Authority records BETA

Karlsson, CarolineMörtberg, Ulla

Search in DiVA

By author/editor
Karlson, MårtenKarlsson, CarolineMörtberg, UllaOlofsson, BoBalfors, Berit
By organisation
Land and Water Resources Engineering
In the same journal
Transportation Research Part D: Transport and Environment
Environmental Analysis and Construction Information Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 410 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf