Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-complexity optical phase noise suppression in CO-OFDM system using recursive principal components elimination
KTH, School of Electrical Engineering (EES), Electromagnetic Engineering. KTH, School of Information and Communication Technology (ICT), Centres, Zhejiang-KTH Joint Research Center of Photonics, JORCEP.
2015 (English)In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 18, 24077-24087 p.Article in journal (Refereed) Published
Abstract [en]

A low-complexity optical phase noise suppression approach based on recursive principal components elimination, R-PCE, is proposed and theoretically derived for CO-OFDM systems. Through frequency domain principal components estimation and elimination, signal distortion caused by optical phase noise is mitigated by R-PCE. Since matrix inversion and domain transformation are completely avoided, compared with the case of the orthogonal basis expansion algorithm (L = 3) that offers a similar laser linewidth tolerance, the computational complexities of multiple principal components estimation are drastically reduced in the R-PCE by factors of about 7 and 5 for q = 3 and 4, respectively. The feasibility of optical phase noise suppression with the R-PCE and its decision-aided version (DA-R-PCE) in the QPSK/16QAM CO-OFDM system are demonstrated by Monte-Carlo simulations, which verify that R-PCE with only a few number of principal components q (= 3) provides a significantly larger laser linewidth tolerance than conventional algorithms, including the common phase error compensation algorithm and linear interpolation algorithm. Numerical results show that the optimal performance of R-PCE and DA-R-PCE can be achieved with a moderate q, which is beneficial for low-complexity hardware implementation.

Place, publisher, year, edition, pages
2015. Vol. 23, no 18, 24077-24087 p.
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-175929DOI: 10.1364/OE.23.024077ISI: 000362419900100PubMedID: 26368499Scopus ID: 2-s2.0-84957595608OAI: oai:DiVA.org:kth-175929DiVA: diva2:866751
Note

QC 20151103

Available from: 2015-11-03 Created: 2015-10-26 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedScopus

Search in DiVA

By author/editor
He, Sailing
By organisation
Electromagnetic EngineeringZhejiang-KTH Joint Research Center of Photonics, JORCEP
In the same journal
Optics Express
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf