Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bounded Negativity and Arrangements of Lines
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). (Algebra and Geometry)
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.). (Algebra and Geometry)ORCID iD: 0000-0002-7186-1524
Fachbereich Mathematik und Informatik, Philipps-Universität Marburg.
Department of Mathematics, University of Nebraska-Lincoln.
Show others and affiliations
2015 (English)In: International mathematics research notices, ISSN 1073-7928, E-ISSN 1687-0247, Vol. 2015, no 19, 9456-9471 p.Article in journal (Refereed) Published
Abstract [en]

The Bounded Negativity Conjecture predicts that for any smooth complex surface X there exists a lower bound for the selfintersection of reduced divisors on X. This conjecture is open. It is also not known if the existence of such a lower bound is invariant in the birational equivalence class of X. In the present note, we introduce certain constants H(X) which measure in effect the variance of the lower bounds in the birational equivalence class of X. We focus on rational surfaces and relate the value of H(ℙ^2) to certain line arrangements. Our main result is Theorem 3.3 and the main open challenge is Problem 3.10.

Place, publisher, year, edition, pages
Oxford, England: Oxford University Press, 2015. Vol. 2015, no 19, 9456-9471 p.
National Category
Geometry Algebra and Logic
Research subject
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-176639DOI: 10.1093/imrn/rnu236ISI: 000366499400011Scopus ID: 2-s2.0-84950327309OAI: oai:DiVA.org:kth-176639DiVA: diva2:868115
Funder
Swedish Research Council, NT:2010-5563
Note

QC 20160114

Available from: 2015-11-09 Created: 2015-11-09 Last updated: 2017-12-01Bibliographically approved
In thesis
1. Topics in Combinatorial Algebraic Geometry
Open this publication in new window or tab >>Topics in Combinatorial Algebraic Geometry
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis consists of six papers in algebraic geometry –all of which have close connections to combinatorics. In Paper A we consider complete smooth toric embeddings X ↪ P^N such that for a fixed positive integer k the t-th osculating space at every point has maximal dimension if and only if t ≤ k. Our main result is that this assumption is equivalent to that X ↪ P^N is associated to a Cayley polytope of order k having every edge of length at least k. This result generalizes an earlier characterisation by David Perkinson. In addition we prove that the above assumptions are equivalent to requiring that the Seshadri constant is exactly k at every point of X, generalizing a result of Atsushi Ito. In Paper B we introduce H-constants that measure the negativity of curves on blow-ups of surfaces. We relate these constants to the bounded negativity conjecture. Moreover we provide bounds on H-constants when restricting to curves which are a union of lines in the real or complex projective plane. In Paper C we study Gauss maps of order k for k > 1, which maps a point on a variety to its k-th osculating space at that point. Our main result is that as in the case k = 1, the higher order Gauss maps are finite on smooth varieties whose k-th osculating space is full-dimensional everywhere. Furthermore we provide convex geometric descriptions of these maps in the toric setting. In Paper D we classify fat point schemes on Hirzebruch surfaces whose initial sequence are of maximal or close to maximal length. The initial degree and initial sequence of such schemes are closely related to the famous Nagata conjecture. In Paper E we introduce the package LatticePolytopes for Macaulay2. The package extends the functionality of Macaulay2 for compuations in toric geometry and convex geometry. In Paper F we compute the Seshadri constant at a general point on smooth toric surfaces satisfying certain convex geometric assumptions on the associated polygons. Our computations relate the Seshadri constant at the general point with the jet seperation and unnormalised spectral values of the surfaces at hand. 

Abstract [sv]

Den här avhandlingen utgörs av sex artiklar inom algebraisk geometri som är nära kopplade till kombinatorik. I artikel A betraktar vi kompletta inbäddningar av glatta toriska variteter X ↪ PN sådana att för något fixt heltal k är det t-te oskulerande rummet i varje punkt av maximal dimension om och endast om t ≤ k. Vårt huvudresultat är att detta antagande är ekvivalent med att den polytop som motsvarar inbäddningen är en Cayleypolytop av ordning k, vars samtliga kanter har längd åtminstonde k. Detta resultat generaliserar en tidigare känd karaktärisering av David Perkinson. Vi visar även att ovanstående antagande är ekvivalent med antagandet att Seshadri- konstanten är lika med k i varje punkt i X. Därmed generaliserar vårt resultat ett tidigare resultat av Atsushi Ito. I artikel B introducerar vi H-konstanter, vilka mäter negativiteten av kurvor på uppblåsningar av ytor. Vi relaterar dessa konstanter till den begränsade negativitetsförmodan. Vidare erhåller vi begränsningar för konstanterna när vi enbart betraktar unioner av linjer i det reella och komplexa projektiva planet. I artikel C studerar vi Gaussavbildningen av ordning k, för k > 1, som avbildar en punkt i en varitet på det k-te oskulerande rummet i samma punkt. Vårt huvudresultat är att, i likhet med fallet k = 1, är dessa högre ordningens Gaussavbildningar ändliga på glatta variteter vars k-te oskulerande rum är fulldimensionellt överallt. Vidare ger vi konvexgeometriska beskrivningar av dessa avbildningar för toriska variteter. I artikel D klassificerar vi scheman av tjocka punkter på Hirzebruchytor vars initalsekvenser är av maximal eller nära maximal längd. Intitialgraden och initialsekvensen för sådana scheman är nära relaterade till den välkända Nagata- förmodan. I artikel E introducerar vi paketet LatticePolytopes till Macaulay2. Detta paket utökar funktionaliteten i Macaulay2 för beräkningar inom torisk och konvex geometri. I artikel F beräknar vi Seshadrikonstanten i generella punkter på glatta toriska ytor som uppfyller vissa konvexgeometriska villkor på de associerade polygonerna. Våra beräkningar koppplar samman Seshadrikonstanten i en generell punkt med jetsepareringen och det icke-normaliserade spektralvärdet hos ytorna. 

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. vii, 25 p.
Series
TRITA-MAT-A, 2015:11
National Category
Mathematics
Research subject
Mathematics
Identifiers
urn:nbn:se:kth:diva-176878 (URN)978-91-7595-734-0 (ISBN)
Public defence
2015-12-04, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council, 2010-5563Swedish Research Council, 2014-4763
Note

QC 20151112

Available from: 2015-11-12 Created: 2015-11-10 Last updated: 2016-12-15Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopushttp://imrn.oxfordjournals.org/content/2015/19/9456

Authority records BETA

Di Rocco, Sandra

Search in DiVA

By author/editor
Lundman, AndersDi Rocco, Sandra
By organisation
Mathematics (Div.)
In the same journal
International mathematics research notices
GeometryAlgebra and Logic

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 81 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf