Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes: a comprehensive review
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0002-3634-8856
KTH, School of Chemical Science and Engineering (CHE), Chemical Engineering and Technology, Applied Electrochemistry.ORCID iD: 0000-0001-5816-2924
(English)Manuscript (preprint) (Other academic)
National Category
Other Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-177395OAI: oai:DiVA.org:kth-177395DiVA: diva2:872617
Note

QS 2015

Available from: 2015-11-19 Created: 2015-11-19 Last updated: 2015-11-19Bibliographically approved
In thesis
1. Theoretical and Experimental Studies of Electrode and Electrolyte Processes in Industrial Electrosynthesis
Open this publication in new window or tab >>Theoretical and Experimental Studies of Electrode and Electrolyte Processes in Industrial Electrosynthesis
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Heterogeneous electrocatalysis is the usage of solid materials to decrease the amount of energy needed to produce chemicals using electricity. It is of core importance for modern life, as it enables production of chemicals, such as chlorine gas and sodium chlorate, needed for e.g. materials and pharmaceuticals production. Furthermore, as the need to make a transition to usage of renewable energy sources is growing, the importance for electrocatalysis used for electrolytic production of clean fuels, such as hydrogen, is rising. In this thesis, work aimed at understanding and improving electrocatalysts used for these purposes is presented.

A main part of the work has been focused on the selectivity between chlorine gas, or sodium chlorate formation, and parasitic oxygen evolution. An activation of anode surface Ti cations by nearby Ru cations is suggested as a reason for the high chlorine selectivity of the “dimensionally stable anode” (DSA), the standard anode used in industrial chlorine and sodium chlorate production. Furthermore, theoretical methods have been used to screen for dopants that can be used to improve the activity and selectivity of DSA, and several promising candidates have been found. Moreover, the connection between the rate of chlorate formation and the rate of parasitic oxygen evolution, as well as the possible catalytic effects of electrolyte contaminants on parasitic oxygen evolution in the chlorate process, have been studied experimentally.

Additionally, the properties of a Co-doped DSA have been studied, and it is found that the doping makes the electrode more active for hydrogen evolution. Finally, the hydrogen evolution reaction on both RuO2 and the noble-metal-free electrocatalyst material MoS2 has been studied using a combination of experimental and theoretically calculated X-ray photoelectron chemical shifts. In this way, insight into structural changes accompanying hydrogen evolution on these materials is obtained.

Abstract [sv]

Heterogen elektrokatalys innebär användningen av fasta material för att minska energimängden som krävs för produktion av kemikalier med hjälp av elektricitet. Heterogen elektrokatalys har en central roll i det moderna samhället, eftersom det möjliggör produktionen av kemikalier såsom klorgas och natriumklorat, som i sin tur används för produktion av t ex konstruktionsmaterial och läkemedel. Vikten av användning av elektrokatalys för produktion av förnybara bränslen, såsom vätgas, växer dessutom i takt med att en övergång till användning av förnybar energi blir allt nödvändigare. I denna avhandling presenteras arbete som utförts för att förstå och förbättra sådana elektrokatalysatorer.

En stor del av arbetet har varit fokuserat på selektiviteten mellan klorgas och biprodukten syrgas i klor-alkali och kloratprocesserna. Inom ramen för detta arbete har teoretisk modellering av det dominerande anodmaterialet i dessa industriella processer, den så kallade “dimensionsstabila anoden” (DSA), använts för att föreslå en fundamental anledning till att detta material är speciellt klorselektivt. Vi föreslår att klorselektiviteten kan förklaras av en laddningsöverföring från ruteniumkatjoner i materialet till titankatjonerna i anodytan, vilket aktiverar titankatjonerna. Baserat på en bred studie av ett stort antal andra dopämnen föreslår vi dessutom vilka dopämnen som är bäst lämpade för produktion av aktiva och klorselektiva anoder. Med hjälp av experimentella studier föreslår vi dessutom en koppling mellan kloratbildning och oönskad syrgasbildning i kloratprocessen, och vidare har en bred studie av tänkbara elektrolytföroreningar utförts för att öka förståelsen för syrgasbildningen i denna process.

Två studier relaterade till elektrokemisk vätgasproduktion har också gjorts. En experimentell studie av Co-dopad DSA har utförts, och detta elektrodmaterial visade sig vara mer aktivt för vätgasutveckling än en standard-DSA. Vidare har en kombination av experimentell och teoretisk röntgenfotoelektronspektroskopi använts för att öka förståelsen för strukturella förändringar som sker i RuO2 och i det ädelmetallfria elektrodmaterialet MoS2 under vätgasutveckling.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. x, 100 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2015:66
Keyword
Electrocatalysis, metallic oxides, ruthenium dioxide, titanium dioxide, DSA, doping, selectivity, ab initio modeling, density functional theory, Elektrokatalys, metalloxider, ruteniumdioxid, titandioxid, DSA, dopning, selektivitet, ab initio-modellering, täthetsfunktionalteori
National Category
Other Chemical Engineering Inorganic Chemistry Theoretical Chemistry Physical Chemistry Materials Chemistry Condensed Matter Physics
Research subject
Chemical Engineering
Identifiers
urn:nbn:se:kth:diva-177025 (URN)978-91-7595-781-4 (ISBN)
Public defence
2015-12-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency, 33252-1
Note

QC 20151119

Available from: 2015-11-19 Created: 2015-11-13 Last updated: 2015-12-18Bibliographically approved

Open Access in DiVA

No full text

Authority records BETA

Karlsson, Rasmus K. B.Cornell, Ann

Search in DiVA

By author/editor
Karlsson, Rasmus K. B.Cornell, Ann
By organisation
Applied Electrochemistry
Other Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf