Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combined measurements of flow structure, partially oxidized fuel and soot in a high-speed direct injection diesel engines
Lunds Tekniska Högskola, Värme- och kraftteknik.
Show others and affiliations
2007 (English)In: Proceedings of the Combustion Institute, ISSN 1540-7489Article in journal (Refereed) Published
Abstract [en]

The evolution of bulk flow structures and their influence on the spatial distribution of heat release zones and of partially oxidized fuel and particulate matter (soot) is examined experimentally in a swirl-supported, direct-injection diesel engine. Vector fields describing the bulk flow structures are measured with particle image velocimetry (PIV), while complementary scalar field measurements of partially oxidized fuel and soot are obtained in the same vertical plane using broadband laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques, respectively. The two-dimensional divergence of the mean velocity fields is also employed to provide information on the mean locations of heat release. Measurements are performed at a highly dilute, 12% O-2, operating condition characteristic of low-NO,, low-temperature diesel combustion systems. The spatial distributions of unburned fuel rapidly develop a structure characterized by two separate zones of high fuel concentration, an inner zone in the cylinder center and an outer zone in the squish volume. Single-cycle measurements show that this two-zone structure is present on an individual cycle basis, and is not an artifact of averaging distinct, single-zone distributions. For this engine build, the mean flow structures developed do not actively promote mixing of either zone, although bulk flow structures in the upper-central region of the cylinder vary significantly on a cycle-by-cycle basis. The measured spatial distributions of particulates indicate that particulates are formed primarily in the inner zone-and remain un-oxidized late in the cycle.

Place, publisher, year, edition, pages
2007.
National Category
Mechanical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-177606DOI: 10.1016/j.proci.2006.07.231ISI: 000252858200147Scopus ID: 2-s2.0-34548710458OAI: oai:DiVA.org:kth-177606DiVA: diva2:873622
Conference
31st International symposium on Combustion, Combustion Institute
Note

QC 20151124

Available from: 2015-11-24 Created: 2015-11-24 Last updated: 2015-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Hultqvist, Anders
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 66 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf