CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Sedimentation of finite-size spheres in quiescent and turbulent environmentsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2016 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 788, p. 640-669Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

Cambridge University Press, 2016. Vol. 788, p. 640-669
##### Keyword [en]

multiphase and particle-laden flows, particle/fluid flow, suspensions
##### National Category

Fluid Mechanics and Acoustics
##### Identifiers

URN: urn:nbn:se:kth:diva-177894DOI: 10.1017/jfm.2015.698ISI: 000368413600019Scopus ID: 2-s2.0-84997815913OAI: oai:DiVA.org:kth-177894DiVA, id: diva2:874899
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt467",{id:"formSmash:j_idt467",widgetVar:"widget_formSmash_j_idt467",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt473",{id:"formSmash:j_idt473",widgetVar:"widget_formSmash_j_idt473",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt479",{id:"formSmash:j_idt479",widgetVar:"widget_formSmash_j_idt479",multiple:true});
##### Funder

EU, European Research Council, ERC-2013-CoG-616186
##### Note

##### In thesis

Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows, yetlittle is known about the behavior of finite-size particles inhomogeneous isotropic turbulence.

To fill this gap, we perform Direct Numerical Simulations of sedimentation in quiescent and turbulent environments using anImmersed Boundary Method to accountfor the dispersed rigid spherical particles. The solid volume fractions considered are 0.5-1%,while the solid to fluid density ratio 1.02.The particle radius is chosen to be approximately 6 Komlogorov lengthscales.

Sedimentation of a dispersed solid phase is widely encountered in applications and environmental flows, yet little is known about the behaviour of finite-size particles in homogeneous isotropic turbulence. To fill this gap, we perform direct numerical simulations of sedimentation in quiescent and turbulent environments using an immersed boundary method to account for the dispersed rigid spherical particles. The solid volume fractions considered are phi = 0.5-1%, while the solid to fluid density ratio rho(p)/rho(f) = 1.02. The particle radius is chosen to be approximately six Kolmogorov length scales. The results show that the mean settling velocity is lower in an already turbulent flow than in a quiescent fluid. The reductions with respect to a single particle in quiescent fluid are approximately 12 % and 14% for the two volume fractions investigated. The probability density function of the particle velocity is almost Gaussian in a turbulent flow, whereas it displays large positive tails in quiescent fluid. These tails arc associated with the intermittent fast sedimentation of particle pairs in drafting kissing tumbling motions. The particle lateral dispersion is higher in a turbulent flow, whereas the vertical one is, surprisingly, of comparable magnitude as a consequence of the highly intermittent behaviour observed in the quiescent fluid. Using the concept of mean relative velocity we estimate the mean drag coefficient from empirical formulae and show that non-stationary effects, related to vortex shedding, explain the increased reduction in mean settling Velocity in a turbulent environment.

QC 20160220

Available from: 2015-11-30 Created: 2015-11-30 Last updated: 2017-12-01Bibliographically approved1. Suspensions of finite-size rigid spheres in different flow cases$(function(){PrimeFaces.cw("OverlayPanel","overlay874914",{id:"formSmash:j_idt787:0:j_idt791",widgetVar:"overlay874914",target:"formSmash:j_idt787:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Suspensions of finite-size rigid particles in laminar and turbulent flows$(function(){PrimeFaces.cw("OverlayPanel","overlay1157858",{id:"formSmash:j_idt787:1:j_idt791",widgetVar:"overlay1157858",target:"formSmash:j_idt787:1:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1256",{id:"formSmash:j_idt1256",widgetVar:"widget_formSmash_j_idt1256",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1309",{id:"formSmash:lower:j_idt1309",widgetVar:"widget_formSmash_lower_j_idt1309",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1310_j_idt1312",{id:"formSmash:lower:j_idt1310:j_idt1312",widgetVar:"widget_formSmash_lower_j_idt1310_j_idt1312",target:"formSmash:lower:j_idt1310:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});