Change search
ReferencesLink to record
Permanent link

Direct link
Asymmetric capture of Dirac dark matter by the Sun
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical Particle Physics.ORCID iD: 0000-0001-5948-9152
KTH, School of Engineering Sciences (SCI), Theoretical Physics, Theoretical Particle Physics.
2015 (English)In: Journal of Cosmology and Astroparticle Physics, ISSN 1475-7516, E-ISSN 1475-7516, Vol. 2015, no 8, 036Article in journal (Refereed) Published
Abstract [en]

Current problems with the solar model may be alleviated if a significant amount of dark matter from the galactic halo is captured in the Sun. We discuss the capture process in the case where the dark matter is a Dirac fermion and the background halo consists of equal amounts of dark matter and anti-dark matter. By considering the case where dark matter and anti-dark matter have different cross sections on solar nuclei as well as the case where the capture process is considered to be a Poisson process, we find that a significant asymmetry between the captured dark particles and anti-particles is possible even for an annihilation cross section in the range expected for thermal relic dark matter. Since the captured number of particles are competitive with asymmetric dark matter models in a large range of parameter space, one may expect solar physics to be altered by the capture of Dirac dark matter. It is thus possible that solutions to the solar composition problem may be searched for in these type of models.

Place, publisher, year, edition, pages
Institute of Physics Publishing (IOPP), 2015. Vol. 2015, no 8, 036
Keyword [en]
dark matter simulations, dark matter theory
National Category
Physical Sciences
URN: urn:nbn:se:kth:diva-175014DOI: 10.1088/1475-7516/2015/08/036ScopusID: 2-s2.0-84940868751OAI: diva2:875206

QC 20151130

Available from: 2015-11-30 Created: 2015-10-09 Last updated: 2015-11-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textScopus

Search in DiVA

By author/editor
Blennow, MattiasClementz, Stefan
By organisation
Theoretical Particle Physics
In the same journal
Journal of Cosmology and Astroparticle Physics
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 47 hits
ReferencesLink to record
Permanent link

Direct link