Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Study of Centralized and Distributed Coordination of Power Injection in Multi-TSO HVDC Grid with Large Off-shore Wind Integration
KTH, School of Electrical Engineering (EES), Industrial Information and Control Systems.ORCID iD: 0000-0003-3946-7655
ELECTA Research Group, KU Leuven, 3001 Leuven-Heverlee, Belgium.
KTH, School of Electrical Engineering (EES), Industrial Information and Control Systems.ORCID iD: 0000-0003-3014-5609
2016 (English)In: Electric power systems research, ISSN 0378-7796, E-ISSN 1873-2046, Vol. 136, p. 281-288Article in journal (Refereed) Published
Abstract [en]

This paper studies centralized and distributed schemes for the coordinationof power injection in an HVDC grid connected to large wind generation.This coordination of power injection aims to keep the power balanced withinthe HVDC grid especially during large wind disturbances. Furthermore, thecoordination tries to follow the converters’ schedules set by the connectingAC-TSOs every 15−minutes. This schedule comes from an overall combinedAC/DC economic dispatch calculation with lower resolution compared to thiscoordination. In this paper, the coordination of power injection has been formulatedas a non-linear constrained optimization problem for the centralizedarchitecture. Next, the centralized optimization problem is decomposed tosub-problems using the Auxiliary Problem Principle (APP) method for thedistributed architecture. This distributed optimization problem is solved byexchanging the required information between the AC TSOs. These two differentapproaches have been evaluated for a 5-terminal HVDC grid. Furthermore,a sensitivity analysis has been carried out to find the optimal updatingrate of power injection set-points. The result shows that the more frequentupdating of power injection coordination in the centralized architecture improvesthe generation reserves in each AC area.

Place, publisher, year, edition, pages
Elsevier, 2016. Vol. 136, p. 281-288
Keywords [en]
Distributed optimization, HVDC grid, Optimal power injection, Wind farm
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-178726DOI: 10.1016/j.epsr.2016.03.001ISI: 000375505800028Scopus ID: 2-s2.0-84960905190OAI: oai:DiVA.org:kth-178726DiVA, id: diva2:878057
Note

QC 20160413

Available from: 2015-12-08 Created: 2015-12-08 Last updated: 2017-12-01Bibliographically approved
In thesis
1. Distributed Control of HVDC Transmission Grids
Open this publication in new window or tab >>Distributed Control of HVDC Transmission Grids
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Recent issues such as priority access of renewable resources recommended by European energy directives and increase the electricity trading among countries lead to new requirements on the operation and expansion of transmission grids. Since AC grid expansions are limited by legislative issues and long distance transmission capacity, there is a considerable attention drawn to application of HVDC transmission grids on top of, or in complement to, existing AC power systems. The secure operation of HVDC grids requires a hierarchical control system. In HVDC grids, the primary control action to deal with power or DC voltage deviations is communication-free and local. In addition to primary control, the higher supervisory control actions are needed to guarantee the optimal operation of HVDC grids. However, the implementation of supervisory control functions is linked to the arrangement of system operators; i.e. an individual HVDC operator (central structure) or sharing tasks among AC system operators (distributed structure).

This thesis presents distributed control of an HVDC grid. To this end, three possible supervisory functions are investigated; coordination of power injection set-points, DC slack bus selection and network topology identification. In this thesis, all three functions are first studied for the central structure. For the distributed solution, two algorithms based on Alternating Direction Method of Multipliers (ADMM) and Auxiliary Problem Principle (APP) are adopted to solve the coordination of power injection. For distributed selection of DC slack bus, the choice of parameters for quantitative ranking of converters is important. These parameters should be calculated based on local measurements if distributed decision is desired. To this end, the short circuit capacity of connected AC grid and power margin of converters are considered. To estimate the short circuit capacity as one of the required selection parameters, the result shows that the recursive least square algorithm can be very efficiently used. Besides, it is possible to intelligently use a naturally occurring droop response in HVDC grids as a local measurement for this estimation algorithm. Regarding the network topology, a two-stage distributed algorithm is introduced to use the abstract information about the neighbouring substation topology to determine the grid connectivity.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. p. 51
Series
TRITA-EE, ISSN 1653-5146 ; 2017:018
Keywords
co-simulation, cyber-physical system, DC slack bus, distributed control, HVDC grids, power injection, topology processor, wind farms
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-202753 (URN)978-91-7729-310-1 (ISBN)
Public defence
2017-04-10, F3, Lindstedtsvägen 26 - KTH campus, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20170306

Available from: 2017-03-06 Created: 2017-03-05 Last updated: 2017-03-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusStudy of Centralized and Distributed Coordination of Power Injection in Multi-TSO HVDC Grid with Large Off-shore Wind Integration

Authority records BETA

Babazadeh, DavoodNordström, Lars

Search in DiVA

By author/editor
Babazadeh, DavoodNordström, Lars
By organisation
Industrial Information and Control Systems
In the same journal
Electric power systems research
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 895 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf